
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science 2177
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

www.manaraa.com

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo

www.manaraa.com

Greg Butler Stan Jarzabek (Eds.)

Generative and
Component-Based
Software Engineering

Second International Symposium, GCSE 2000
Erfurt, Germany, October 9-12, 2000
Revised Papers

1 3

www.manaraa.com

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Greg Butler
Concordia University, Department of Computer Science
1455 de Maisonneuve Blvd West, Montreal, Quebec H3G 1M8, Canada
E-mail: gregb@cs.concordia.ca

Stan Jarzabek
National University of Singapore
School of Computing, Dept. of Computer Science
Singapore 117543
E-mail: stan@comp.nus.edu.sg

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Generative and component based software engineering : second international
symposium ; revised papers / GCSE 2000, Erfurt, Germany, September 9 - 12,
2000. Greg Butler ; Stan Jarzabek (ed.). - Berlin ; Heidelberg ; New York ;
Barcelona ; Hong Kong ; London ; Milan ; Paris ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2177)
ISBN 3-540-42578-0

CR Subject Classification (1998): D.2, K.6, J.1

ISSN 0302-9743
ISBN 3-540-42578-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author
Printed on acid-free paper SPIN: 10840460 06/3142 5 4 3 2 1 0

www.manaraa.com

Preface

These are the proceedings of the second symposium on Generative and Com-
ponent-Based Software Engineering that was held in Erfurt, Germany, on Oc-
tober 9–12, 2000, as part of the Net.Object Days conference. The GCSE sym-
posium was born in 1999 at the Smalltalk and Java in Industry and Educa-
tion Conference (STJA), the precursor to the Net.Object Days conference. The
GCSE symposium grew out of a special track on generative programming that
was organized by the working group “Generative and Component-Based Soft-
ware Engineering” of the “Gesellschaft für Informatik” FG 2.1.9 at STJA in the
two years 1997 and 1998. The GCSE symposium covers a wide range of related
topics from domain analysis, software system family engineering, and software
product lines, to extendible compilers and active libraries.

The second GCSE symposium attracted 29 submissions from all over the
world. This impressive number demonstrates the international interest in gen-
erative programming and related fields. After a careful review by the program
committee, 12 papers were selected for presentation. We are very grateful to
the members of the program committee, all of them renowned experts, for their
dedication in preparing thorough reviews of the submissions.

Special thanks go to Elke Pulvermüller, Andreas Speck, Kai Böllert, Detlef
Streitferdt, and Dirk Heuzeroth, who continued the tradition from GCSE’99 and
organized a special conference event, the Young Researchers Workshop (YRW).
This workshop provided a unique opportunity for young scientists and Ph.D.
students to present their ideas and visions of generative programming and related
topics and to receive thorough critique and feedback from senior experts in the
field.

We are also indebted to the keynote speakers and tutorial presenters, Paul
Bassett, Doug Smith, and Michel Tilman, for their contribution to GCSE 2000.
Fortunately, we have papers from two of the three keynote speakers for these
proceedings. Unfortunately, there is no paper for the keynote talk on “Software
Development by Refinement” given by Doug Smith of the Kestrel Institute. Fi-
nally, we wish to thank all who put in their efforts and helped to make this
symposium happen, especially the authors and the Net.Object Days organizers.

We hope you will enjoy reading the GCSE 2000 contributions, and invite you
to contribute to future symposiums.

October 2000 Greg Butler
Stan Jarzabek

www.manaraa.com

Organization

GCSE 2000 was co-hosted with Net.Object Days 2000 and organized by the
Working Group “Generative and Component-Based Software Engineering” of
the German “Gesellschaft für Informatik”.

Program Chairs

Greg Butler (Concordia University, Canada)
Stan Jarzabek (National University of Singapore, Singapore)

Program Committee

Mehmet Aksit (University of Twente, The Netherlands)
Paul Bassett (Netron Inc., Canada)
Don Batory (University of Texas, USA)
Ira Baxter (Semantic Designs, Inc., USA)
Manfred Broy (Technical University of Munich, Germany)
Jim Coplien (Bell Labs, USA)
Krzysztof Czarnecki (DaimlerChrysler AG, Germany)
Jin Song Dong (National University of Singapore, Singapore)
Ulrich Eisenecker (University of Applied Sciences, Kaiserslautern, Germany)
Harald Gall (Technical University of Vienna, Austria)
Kyo Kang (Pohang University of Science and Technology, Korea)
Rudolf Keller (Université de Montréal, Canada)
Peter Knauber (Fraunhofer Institute for Experimental Software Eng., Germany)
Kung-Kiu Lau (University of Manchester, UK)
Hafedi Mili (University of Quebec, Canada)
Gail Murphy (University of British Columbia, Canada)
Pavol Navrat (Slovak University of Technology, Slovakia)
John Potter (University of New South Wales, Australia)
Dieter Rombach (University of Kaiserslautern, Germany)
Clemens Szyperski (Microsoft Research, USA)
Todd Veldhuizen (Indiana University, USA)

Organization Committee

C. Cap (University of Rostock)
K. Czarnecki (DaimlerChrysler AG)
T. Dittmar (Daedalos Consulting GmbH)
B. Franczyk (University of Essen)
U. Frank (University of Koblenz-Landau)

www.manaraa.com

Organization VII

M. Goedicke (University of Essen)
M. Jeckle (DaimlerChrysler AG)
H. Krause (Transit)
F. Langhammer (Living Pages Research)
M. Lehmann (Sun Microsystems)
B. Lenz (Transit)
C. Müller-Schloer (University of Hannover)
I. Philippow (Technical University of Ilmenau)
H.-W. Six (Fern University of Hagen)
R. Unland (University of Essen)
G. Vossen (University of Münster)
M. Weber (University of Ulm)
H.G. Weißenbach (HW Consulting)

www.manaraa.com

Table of Contents

Invited Papers

The Theory and Practice of Adaptive Components . 1
Paul G. Bassett

Designing for Change, a Dynamic Perspective . 15
Michel Tilman

Aspects and Patterns

On to Aspect Persistence . 26
Awais Rashid

Symmetry Breaking in Software Patterns . 37
James O. Coplien, Liping Zhao

Aspect Composition Applying the Design by Contract Principle 57
Herbert Klaeren, Elke Pulvermüller, Awais Rashid, Andreas Speck

Models and Paradigms

Towards a Foundation of Component-Oriented Software Reference Models 70
Thorsten Teschke, Jörg Ritter

Grammars as Contracts . 85
Merijn de Jonge, Joost Visser

Generic Components: A Symbiosis of Paradigms . 100
Martin Becker

Components and Architectures

Design and Implementation Constructs for the Development of Flexible,
Component-Oriented Software Architectures . 114

Michael Goedicke, Gustaf Neumann, Uwe Zdun

Scenario-Based Analysis of Component Compositions 129
Hans de Bruin

Product Instantiation in Software Product Lines: A Case Study 147
Jan Bosch, Mattias Högström

www.manaraa.com

X Table of Contents

Mixin-Based Composition and Metaprogramming

Mixin-Based Programming in C++ . 163
Yannis Smaragdakis, Don Batory

Metaprogramming in the Large . 178
Andreas Ludwig, Dirk Heuzeroth

Just When You Thought Your Little Language Was Safe:
“Expression Templates” in Java . 188

Todd L. Veldhuizen

Author Index . 203

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

G. Butler and S. Jarzabek (Eds.): GCSE 2000, LNCS 2177, pp. 15-25, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Designing for Change, a Dynamic Perspective

Michel Tilman

System Architect, Unisys Belgium
mtilman@acm.org

Abstract. Despite advances in software engineering and process methodologies
over the past decades, not many IT projects seem particularly well adapted to
today's fast-paced world. Software developers must start to acknowledge
change and even uncertainty as a given, rather than the exception that should be
studiously avoided, and they must adapt their techniques accordingly.
Some business domains have seen attempts to address this situation. Several
workflow vendors, for instance, have been marketing change and end-user
programmability as major assets of their products. But, in general, they have
been strangely ignorant of (good) modern software engineering practices, and
the results have not really lived up to the claims. But we may expect a revival
on a grander scale: the ability to (re) define the business logic on the fly is
becoming a crucial asset when businesses re-align their core processes around
the Internet.
The Internet is transforming the way we envision and design applications.
While we could build yesterday's simple Web applications with, let's face it,
primitive techniques, this is simply no longer true. High-volume databases,
long-term transactions, interoperability, distributed objects, re-use, these are
some of the technical issues that must be dealt with. But the real challenge will
be to leverage all this technology: we must empower the user to set up,
maintain and change his applications more easily.
We need dynamic systems, where applications can be changed at run-time in a
high-level way, preferably by end-users. Above all, we need appropriate
architectural techniques. In this paper we explore the use of dynamic object
models. It turns out that the basic concepts are fairly simple. As for the
difficulties, we can borrow solutions from many disciplines in computer
science. If we do it right, we can even make the system work for itself.

Introduction

When we analyze a typical business application, say, a relational database application,
we find out that knowledge of the business model is usually hard to locate. Looking at
the database structures does not tell us the whole story of object structures and
relationships. Neither is it easy to spot higher-level constraints and business rules.
Thus we have to delve into the application code in order to discover the business
model. This makes it harder to understand the business model, and it makes it even
harder to change.

www.manaraa.com

Michel Tilman 16

Fig. 1. Business Logic Hard-Wired in End-User Applications (Typical Database Application).

In a way, this is all the more surprising since object technology (and later

component technology) was heralded as the solution to re-use and enhanced
maintainability. One of the problems is, of course, that object technology itself can
never make up for lack of design and algorithmic skills, and for inappropriate process
models and team structures. And we need more than class libraries or re-usable
components.

Object-oriented frameworks aim to capture the commonality and variability in
particular application domains. Frameworks take time and investment to mature,
however, and are (initially) harder to understand than straightforward code. Hotspots,
points in the framework where we extend or specialize the generic behavior, are of
crucial importance. Even with good documentation it usually takes knowledgeable
developers to properly use or build frameworks, as the hotspots are (once again) often
buried in code. Another point that is often overlooked relates to the framework’s
ability to work ‘out of the box’. Many so-called frameworks are really just skeletons
that do not perform any real function of their own.

Model-Driven Systems

In the past decade, several procedure-oriented workflow systems have been replaced
by dynamic systems, driven by explicit models of the workflow processes. These

Employee Name Employee ID Department ID
Smith 1280 12
Adams 1281 19
Washington 1282 12

Repositor

End-user applications

www.manaraa.com

Designing for Change, a Dynamic Perspective 17

allow for easy run-time change of process definitions without having to shutdown and
restart the system. Typical examples are flowchart-like models of processes with
graphical editors to build and simulate the processes (whether flowcharts are
appropriate representations of business processes, is beyond the scope of this paper).

Another example of a model-driven system is the typical CASE tool. But instead of
being interpreted at run-time, most CASE tools generate source code that is
subsequently edited by developers. The challenge here is to make design and
development co-evolve consistently, the biggest obstacle being the usual discrepancy
between a domain-specific design model and a general-purpose programming
language.

Dynamic Object Models

A system with a dynamic object model (a.k.a. active or adaptive object model)
[Riehle+2000,Tilman2000] has an explicit object model that it interprets at run-time.
If you change the object model, the system changes its behavior (essentially)
immediately. What goes into a dynamic object model is domain-specific. Typically
the model defines objects and their relationships, their states and the conditions under
which an object changes its states, as well as the various business rules that specify
how a company does their business. Commercial and research applications of systems
driven by dynamic object models have been developed for insurance, banking,
administrative and workflow applications, amongst others. Several of these add their
own specific extensions a core dynamic object model theme.

For dynamic object models to be effective, they need to be sufficiently ‘high-level’
and complete with regards to their application domains. The UDP insurance system
[Johnson+1998], for instance, obviates the need for a general programming language,
since the computations that the users are interested in consist essentially of arithmetic
expressions, akin to spreadsheet formulas. End-users express their business rules in
terms of this high-level ‘scripting language’, and in terms of objects and object
properties. The insurance system empowers end-users to specify the solutions to their
problems completely in terms of the UDP dynamic object model.

Generic CASE tools on the other hand provide a high-level way to express objects
with their classifications and relationships, but necessarily leave out many details that
must be specified in an external language, usually a general-purpose programming
language. Thus CASE tool models, even if dynamically interpreted, are not
necessarily effective dynamic object models.

Dynamic object models bring ‘programmability’ closer to the end-user, who is the
domain expert. Still, a bit of caution is in order here, as there are many shades of gray
in domain expertise and in ‘end-user programmability’. Modeling several hundred
object types and their relationships, for instance, requires good skills in object-
oriented design, whereas creating queries by means of a visual builder may be easier
to learn if the user is not exposed to actual SQL code.

www.manaraa.com

Michel Tilman 18

Model-Driven Frameworks

Dynamic object models are high-level, executable specifications of the business
model. Hence dynamic object models require execution engines. The engine typically
provides components and tools to manage the dynamic object model in a repository,
to let users interact with the objects through forms, overview lists and search
facilities, and to execute the business rules. Thus it makes sense to view the engine as
a domain-specific virtual machine for programs expressed as dynamic object models.

When we build several end-user applications with dynamic object models, after a
while we may discover duplicate pieces of high-level ‘code’. This usually indicates
the need for a new kind of generic functionality. Then we change the meta-model that
describes what goes into a dynamic object model, and modify the execution engine to
support the new functionality. From now on, end-user applications can be developed
that exploit this functionality directly, without having to ‘code’ it over and over again.

While dynamic models seem an overly complex solution at first sight, they arise
rather naturally. Applications tend to evolve over the course of the years. Some
aspects, like the organizational structure and the business rules, should be easier and
faster to change than others, such as the generic functionality of form tools. Object-
oriented frameworks provide generic functionality and support for evolution, but, in
general, their designs do not pay sufficient attention to the nature of genericity and
evolution from the user’s point of view. Starting out with a regular framework, we
make hotspots that should be easily configurable by ‘end-users’ explicit, by means of
domain-specific dynamic object models. We leave the interpretation of the models to
the slower-evolving generic components and to the tools of the framework. Such
model-driven frameworks thus directly support software evolution at different levels.

Obviously, we can apply this technique recursively. If, say, at the framework level
we regularly require new interface tools, it may worthwhile to consider if a dynamic
object model for assembling user interface components is preferable to coding them
each time from scratch.

Example: The Argo Framework

Argo, who are responsible for managing public schools within the Flemish
community in Belgium, initiated a project to support their administration through IT
technology. Not only did they commission a set of finished end-user applications, but
they also required a framework to develop and maintain these applications
[Tilman+1999]. Furthermore, end-users were to participate in the development
process. All this was partly motivated by the fact that Argo, being a political
organization, was very susceptible to changes in policies. In the course of the project,
two major reorganizations occurred. As a result, project goals and requirements
changed frequently.

From the onset we opted for an object-oriented framework driven by a dynamic
object model, although both framework and meta-model as such have changed
considerably over the past six years. The system (which is completely developed in
VisualWorks\Smalltalk) supports the development of administrative-style

www.manaraa.com

Designing for Change, a Dynamic Perspective 19

applications. These applications typically require a mix of database, document
management and workflow functionality. In a later phase we extended the client /
server tools with an application server that gives a new interpretation to the dynamic
object model and allows users to access the existing applications through the Internet.
While the actual end-user applications are specific to the school system, the generic
functionality of the framework itself suits many administrative environments.

To enable users to participate in the development process, end-user applications
can be developed to a large degree without coding, through modeling and
configuring. Scripting is confined to implement more sophisticated business rules.
Even the scripting elements are partly modeled and stored in a (meta-) repository
alongside the rest of the dynamic object model, separate from the framework code.

Fig. 2. Dynamically Consulted Meta-information Stored in Repository (Argo Framework).

The dynamic object model at Argo not only describes the business model, such as
the organizational model, the structure of the objects, the authorization rules, the
constraints and other business rules, but it also describes how the user interacts with
all this information. This includes amongst others specifications of forms, overview

Meta-repository

End-user tools Configuration and administration tools

Employee

Person
Name
Id

Department
Id

Works in

Layout User Application
My layout Tilman Documentation
Default Documentation

Object model

Applications

www.manaraa.com

Michel Tilman 20

lists, query screens and default behavior of applications. In contrast to, say, free-form
painter tools to design user interfaces, we provide users with configuration tools that
are driven by the model.

Building an application with the Argo framework does not follow a specific
sequence of steps. There are some obvious dependencies, however. For instance, it is
impossible to define constraints on object types that do not yet exist. Other than these
dependencies, developers are free to perform the actions in any order they want.

Building an Application with the Argo Framework

A new application typically starts by extending the existing object model with the
required object types, attributes, relationships and basic constraints. Then we specify
which part of the object model we want to use in our new application. We capture this
information in application environments. Application environments provide a view on
the database, but they also serve another important function. For each object type,
attribute and relationship within the environment, we define in a course-grained way
how we are going to use that particular element: for instance, can we use it in our
query editor, is it read-only and can we instantiate a given type? We store both object
model and application environment in the database.

Then, without any code or code generation, we get a fully functional default
application, where the generic end-user tools (such as the query editor, the overview
list and the form tool) adapt themselves automatically to the meta-information in the
dynamic object model. The query editor, for instance, dynamically retrieves the list of
searchable object types and properties from the application environment, and presents
this list to the user. The form tools allow to create and update objects, and to import
and view documents. Other tools are operational, such as the thesaurus browser and
inbaskets containing to-do lists. This (and other) functionality becomes immediately
available to the user, suitably filtered by the specifications of the dynamic object
model and the application environment. Thus the framework only needs a (partial)
model to work right out of the box.

Later on, the user can customize the default applications interactively, for instance
to build (even) sophisticated queries and store them for later re-use, and to configure
more appropriate layouts for overview lists and forms. More knowledgeable users
configure authorization rules, advanced (passive) constraints and active event-
condition-action rules. The latter perform specific context-dependent actions
whenever particular events happen. Behavior may be added to the model in order to
support the scripting used in some of the business rules.

Advantages

The advantages of this approach are manifold. For one, we do not need to follow a
fixed sequence of steps. Instead, we build increasingly complete specifications that
are available for immediate use. This effectively blurs the boundaries between
developing and prototyping. Although (due to the generic nature of the framework)

www.manaraa.com

Designing for Change, a Dynamic Perspective 21

we still need a certain amount of scripting, we build end-user applications to a large
degree by modeling and configuring only.

Another benefit is the dynamic, interactive nature of the tools, which results in
immediate feedback. And since the tools adapt themselves automatically to the run-
time meta-information in the central repository, maintenance of client software
becomes easier.

Internet-Enabling the Argo Framework

The goal for the Internet version was to re-use the existing dynamic object model and
the generic framework functionality. Since application specifications provide a high-
level view on how to interact with the information in the database, we had
considerable freedom to adapt the interpretation of these specifications to the Web
metaphor. To fine-tune this process even further, we added a new configuration tool
to the system. But this new tool is really just a configured application, like regular
end-user applications. This has important ramifications: once the generic end-user
tools have become available through the Internet, any existing application becomes
accessible through the Web, including this configuration tool itself. This allows us to
bootstrap the development environment to the Internet.

Bootstrapping the Argo Framework

In order for this bootstrapping process to take place, we must not only port the generic
end-user tools, but also other configuration tools, such as the object model editor, the
business rules editors and the document management tools. Things get a lot easier
when the development tools are not dedicated tools, but when they can be configured
in the system itself, like the new Internet configuration tool. To this end, we model
the meta-model and system objects like electronic documents, thesaurus keywords,
layouts, queries and constraints in the system itself. Our generic end-user tools also
need to be sufficiently expressive. It is not a trivial task to design such a system up-
front, however, so we opted for a bootstrapping process, starting with hard-wired
development tools, and replacing them gradually as the generic end-user tools got
more powerful.

Another benefit is that end-user application developers, who are not experienced
framework developers can now enhance or personalize their own tools. And
whenever we enhance the functionality of the generic end-user tools, the development
tools go along too.

The ‘downside’ of all this is that we need a more reflective system, including a
self-descriptive meta-model and rules acting on rules.

www.manaraa.com

Michel Tilman 22

Fig. 3. Self-Descriptive Dynamic Object Model (Argo Framework).

Our experience tells us that building such as system is not necessarily that hard, as
long as we start small and stay focused. In the end, we get many things for free.

Pros and Cons of Dynamic Object Models

Dynamic object models allow us to build applications that are easier to change, even
by end-users. Dynamic object models offer additional benefits, some of which are not
apparent at first sight, but they also impose their own challenges. We refer the reader
to the “Dynamic Object Model” pattern paper [Riehle+2000] for additional
discussions.

End-user, configuration and administration tools

Object model

Meta-model

Applications, views, queries,
rules, processes

Object

Employee Employee ID Department ID
Name
Smith 1280 12
Adams 1281 19
Washington 1282 12

(Meta)-repository

www.manaraa.com

Designing for Change, a Dynamic Perspective 23

Advantages of Dynamic Object Models

Dynamic object models contain run-time meta-information of the end-user
applications. Since this data is explicitly available, rather than implicitly hard-coded,
we can put this information to many uses. For one, it becomes possible to
automatically generate useful and consistent documentation about the end-user
applications. We can even personalize this documentation for each individual user.

Compatibility with existing client code is always a difficult problem when
interfaces need to be changed. Dynamic object models make this much less of a
chore. Say we must change the functionality of form layouts in the Argo framework,
then we simply write a conversion script that enumerates the layouts in the repository,
and converts them from one format into another. No ‘traditional’ modification of the
client code in the end-user applications is required.

When end-user applications are completely described by (high-level) dynamic
object models, we can easily migrate to other environments, since we only need to
port the framework code. The end-user applications remain operational. The
bootstrapping approach used in the Argo framework further reduces the amount of
work that needs to be done.

Dynamic object models help us set up test suites easily. For instance, by
enumerating application environments, stored queries and list and form layouts in the
Argo framework, we easily created a parameterizable framework to benchmark
database servers or to perform regression testing.

Since the business model is explicitly represented, it is much easier to understand
the model and to estimate the impact of changing user requirements. Building end-
user applications becomes a more declarative process, where developers concentrate
on the ‘what’, rather than on the ‘how’.

Increased Design and Run-Time Complexity

Frameworks driven by dynamic object models are initially harder to understand.
Some of this complexity is common to most frameworks. A further failure to grasp
readily what is going on is due to the design of dynamic object models. Many systems
use the following (or a similar) core design:

www.manaraa.com

Michel Tilman 24

Fig. 4. Dynamic Object Model (Core Design).

Here, objects are typically represented as dynamically typed instances of a generic
class. The object types are full-blown objects in their own right. Each object type
maintains a list of property types that defines the ‘structure’ of its ‘instances’. Each
instance maintains its properties in a dynamic list. This design enables us to create
new object types at run-time, and to instantiate these types without having to create
new classes. More elaborate or domain-specific designs build upon this kernel
structure, adding, for instance, type-subtype relationships, arbitrary relationships and
composite structures.

Hence what used to be an instance of a specific class in a regular programming
language, is now represented as a collection of objects with various relationships.
This makes it harder to understand the design and the run-time structure of dynamic
object models. The main problem lies with the tools. Dynamic object models
effectively introduce new ‘languages’, but we are still using the old development tools
(such as class browsers and object inspectors) to look at the structure. Once we have
created new design and development tools adapted to the new language, these
problems go away.

Some of the regular development tools are no longer available when building end-
user applications. The Argo framework, for instance, uses a multi-user team
development tool to store the framework code. Since we needed versioning facilities
for business rules and object behavior, we added a simple versioning scheme to our
dynamic object model. A bit of modeling and a few business rules enabled us to
configure this in the system itself in just a few hours.

Object

Property
value

1

*

1

*
PropertyType

name
type *1 *1

ObjectType
name

*1 *1

*

*

*

*

www.manaraa.com

Designing for Change, a Dynamic Perspective 25

Performance

Many people fear that dynamic systems are inherently slow. Yet many dynamic
systems in diverse domains offer the flexibility we really need, while exhibiting good
performance. Smalltalk virtual machines, for instance, have come a long way since
the early seventies, and they are still improving; processor speeds have increased in
part because of clever, dynamic scheduling strategies, and database vendors are
improving statistics-based query optimizers.

Whether performance of a specific dynamic object model is acceptable, ultimately
depends on its particular application domain and on the end-user requirements, but we
can also borrow many ideas from other software engineering domains.

For one, there are many ways to improve upon a naive implementation of dynamic
object models [Tilman2000]. If the language permits, we can even generate concrete
classes for each object type dynamically, using a just-in-time scheme.

The Argo framework contains many caching strategies, some explicit, some
implicit. These are not confined to the persistence component only.

Another solution aims to optimize for typical usage patterns. The Argo persistence
component, for instance, uses generic hints and statistical information to drive the
query generation process. Discovering usage patterns and designing appropriate
heuristics usually takes time, however, since we need to analyze the run-time
behavior of a relevant number of end-user applications.

We can also apply the very dynamic nature of these systems to overcome their
weaknesses. Some of the authorization rules in the Argo system, for instance, require
a lot of data, depending on the contents of an object’s properties, and are rather time-
consuming. By waiting till the last possible moment, we analyze the definitions of
these rules at run-time, and decide which ones we may safely skip. Partial evaluation
techniques offer additional interesting opportunities to execute static ‘computations’
at development time.

References

[Johnson+1998] Ralph E. Johnson and Jeff Oakes. “The User-Defined Product Framework.”
Unpublished manuscript, available from http://st-www.cs.uiuc.edu/users/johnson/papers/udp
[Riehle+2000] Dirk Riehle, Michel Tilman and Ralph E. Johnson, Dynamic Object Model,
PloP 2000
[Tilman+1999] Michel Tilman and Martine Devos, A Reflective and Repository-Based
Framework, pp.29-64, Implementing Application Frameworks (M.E. Fayad, D. C. Schmidt, R.
E; Johnson ed.), Wiley Computer Publishing
[Tilman2000] Michel Tilman, Designing for Change, a Reflective Approach, Tutorial at the
GCSE 2000 Conference

www.manaraa.com

G. Butler and S. Jarzabek (Eds.): GCSE 2000, LNCS 2177, pp. 26-36, 2001.
© Springer-Verlag Berlin Heidelberg 2001

On to Aspect Persistence

Awais Rashid

Computing Department, Lancaster University, Lancaster LA1 4YR, UK
marash@comp.lancs.ac.uk

Abstract. Over the recent years aspect-oriented programming (AOP) has found
increasing interest among researchers in software engineering. Aspects are
abstractions which capture and localise cross-cutting concerns. Although
persistence has been considered as an aspect of a system, persistence of aspects
has been largely ignored. This paper identifies several scenarios where aspect
persistence is an essential requirement. A model for aspect persistence and an
initial prototype based on AspectJ (0.6beta2) are presented. Various open issues
are also pointed out.

1 Introduction

Over the recent years aspect-oriented programming (AOP) [9] has found increasing
interest among researchers in software engineering. It aims at easing software
development by providing further support for modularisation. Aspects are abstractions
which serve to localise any cross-cutting concerns e.g. code which cannot be
encapsulated within one class but is tangled over many classes. A few examples of
aspects are memory management, failure handling, communication, real-time
constraints, resource sharing, performance optimisation, debugging and
synchronisation. In AOP classes are designed and coded separately from aspects
encapsulating the cross-cutting code. The links between classes and aspects are
expressed by explicit or implicit join points. An aspect weaver is used to merge the
classes and the aspects with respect to the join points. This can be done statically as a
phase at compile-time or dynamically at run-time [7, 9].
AOP research has identified persistence as an aspect of a system [12, 21]. However,
the need for aspect persistence has not been considered. Existing work on lifetime of
aspects [7, 9, 11] has argued that at least some of the aspects should live for the
lifetime of the program execution and not die at compile-time. In certain cases the
need for aspects to outlive the program execution can arise. [17], for example,
proposes the use of an aspect repository for managing and reusing aspects in a
distributed environment. Aspects in the repository live beyond the execution of the
programs using them. Some aspects can be persistent by nature. [18, 19] identify
several aspects cross-cutting the schema and the data in object-oriented databases.
These include instance adaptation, versioning, clustering, access rights and data
representation, etc. Due to the close integration between object-oriented programming
languages and object-oriented databases these aspects are seamlessly used by
application programs but are persistent by nature and reside in the database.

www.manaraa.com

On to Aspect Persistence 27

This paper proposes an approach for aspect persistence. The next section makes a
case for aspect persistence by discussing several scenarios involving persistent
aspects. A description of the proposed aspect persistence model is presented in section
3. The model is independent of a particular AOP approach and takes into account the
evolving nature of aspect languages and representations. An initial prototype
implementation of the model using AspectJ (0.6beta2) [2] and the Jasmine (1.21)
object database management system is discussed in section 4 while the various open
issues are outlined in section 5. Section 6 concludes the paper and identifies directions
for future work.

2 Why Persistent Aspects?

This section describes some scenarios involving persistent aspects. The discussion
demonstrates that aspect persistence is an essential requirement in many cases, hence
highlighting the need to provide support for the purpose.

2.1 An Aspect Repository for Managing and Reusing Aspects

[17] proposes the use of an aspect repository to manage and reuse aspects in a
distributed environment. The approach aims at reducing the additional complexity
introduced due to the need to find an aspect in a network of computing units. Aspects
in the repository are persistent and applications at different locations can query the
repository to retrieve the required aspects at run-time. This is shown in Fig. 1 [17].

ORB

Aspect
Repository

Aspect1

Location A

Aspect2

Location B

Aspect3

Location C

Application

Fig. 1. Managing and Reusing Distributed Aspects through an Aspect Repository [17].

Another scenario is an automated software development environment where both
components and aspects reside in a database. The appropriate components and aspects
are retrieved by the assembling process which carries out the weaving.

www.manaraa.com

Awais Rashid 28

2.2 Instance Adaptation During Class Versioning

The second example is based on instance adaptation during class versioning [3, 14,
20] in object-oriented databases. Class versioning allows several versions of one type
to be created during evolution. An instance is bound to a specific version of the type
and when accessed using another type version (or a common type interface) is either
converted or made to exhibit a compatible interface. This is termed as instance
adaptation and is essential to ensure structural consistency. A detailed description of
class versioning is beyond the scope of this paper. Interested readers are referred to
[3, 14, 20]. The following discussion demonstrates that the instance adaptation code
cross-cuts the class versions and can be separated using aspects. It should be noted
that the instance adaptation aspects cross-cut persistent entities (the class versions)
and are persistent by nature.

Person_Ver_1
Attributes:
 name

Person
Attributes:
 name

Person
Attributes:
 name
 age
 height

Person_Ver_1
Attributes:
 name
Handlers:
 age
 height

Person_Ver_2
Attributes:
 name
 age
 height

Person_Ver_3
Attributes:
 name
 age
Handlers:
 height

(a) (b) (c)

Person
Attributes:
 name
 age
 height

Person_Ver_1
Attributes:
 name
Handlers:
 age
 height

Person_Ver_2
Attributes:
 name
 age
 height

Legend Class Version Version Set Version Set Interface
Fig. 2. Class Versioning in ENCORE.

We first consider the instance adaptation strategy of ENCORE [20]. A similar
approach is employed by AVANCE [3]. As shown in figure 2, applications access
instances of a class through a version set interface which is the union of the properties
and methods defined by all versions of the class. Error handlers are employed to trap
incompatibilities between the version set interface and the interface of a particular
class version. These handlers also ensure that objects associated with the class version
exhibit the version set interface. As shown in Fig. 2(b) if a new class version modifies
the version set interface (e.g. if it introduces new properties and methods) handlers for
the new properties and methods are introduced into all the former versions of the type.
On the other hand, if creation of a new class version does not modify the version set
interface (e.g. if the version is introduced because properties and methods have been
removed), handlers for the removed properties and methods are added to the newly
created version (cf. Fig. 2(c)).
The introduction of error handlers in former class versions is a significant overhead
especially when, over the lifetime of the database, a substantial number of class
versions can exist prior to the creation of a new one. If the behaviour of some
handlers needs to be changed maintenance has to be performed on all the class

www.manaraa.com

On to Aspect Persistence 29

versions in which the handlers were introduced. To demonstrate the use of persistent
aspects we have chosen the scenario in Fig. 2(b). Similar solutions can be employed
for other cases. As shown in Fig. 3(a) instead of introducing the handlers into the
former class versions they are encapsulated in an aspect. Fig. 3(b) depicts the case
when an application attempts to access the age and height attributes in an object
associated with version 1 of class Person. The aspect containing the handlers is
woven into the particular class version. The handlers then simulate (to the application)
the presence of the missing attributes in the associated object.

Legend Class Version Version Set Aspect ObjectVersion Set Interface

Link between aspect and class version Associated Object Application

Person_Ver_1
Attributes:
 name

Person_Ver_2
Attributes:
 name
 age
 height

Handlers:
 age
 height

Person
Attributes:
 name
 age
 height

Person_Ver_1
Attributes:
 name

Person_Ver_2
Attributes:
 name
 age
 height

Handlers:
 age
 height

Person
Attributes:
 name
 age
 heightname: James

Application

Uses

Accesses

W
oven

Handlers invoked and results returned to the application

1

2
3

4

(a) (b)

Fig. 3. The Aspect-Oriented Instance Adaptation Approach.

Encapsulating handlers in an aspect offers an advantage in terms of maintenance as
only one aspect is defined for a set of handlers for a number of older class versions.
Behaviour of the handlers can be modified within the aspect instead of modifying
them within each class version. Aspects also help separate the instance adaptation
strategy from the class versions. For example, let us suppose one wants to employ a
different instance adaptation approach1, the use of update/backdate methods for
dynamic instance conversion between class versions (as opposed to simulating a
conversion) [14]. In this case only the aspects need to be modified without having the
problem of updating the various class versions. These are automatically updated to
use the new strategy when the aspect is woven. The aspect-oriented approach has a
run-time overhead as aspects need to be woven and unwoven (if adaptation strategies
are expected to change). However, this overhead is smaller than that of updating and
maintaining a number of class versions. The overhead can be reduced by leaving an
aspect woven and only reweaving if the aspect has been modified. Details of the
aspect-oriented instance adaptation approach have been reported in [18].

1 Such a need can arise due to application/scenario specific adaptation requirements or the

availability of a more efficient strategy.

www.manaraa.com

Awais Rashid 30

2.3 Clustering

[19] identifies clustering as a persistent aspect which cross-cuts the objects residing in
an object-oriented database. Traditionally it is the task of the database application
programmer to ensure that related objects are clustered together. However, the task is
easy only for a small number of objects. As the number of objects that need to be
clustered increases (it should be noted that the clustering reasons could be different
for different groups of objects) the programmer’s task becomes more and more
complicated. The situation worsens if the same object needs to be clustered together
with more than one group. Considering clustering as an aspect of data residing in a
database allows managing these complex scenarios transparently of the programmer.
The programmer can specify clustering as an aspect of a group of objects regardless
of whether some objects in the group also form part of another group. The clustering
aspects can then be used by the system to work out an efficient storage strategy.
Furthermore, if the clustering requirements for an object change the programmer can
re-configure the clustering aspect to indicate which group of objects should be
clustered with this object. This helps to manage the physical reorganisation of the
various clustered objects transparently of the programmer. It should also be noted that
clustering is not necessarily an aspect of all the objects residing in the database.
Introducing clustering as an aspect allows only those objects having this aspect to be
clustered.

2.4 Other Persistent Aspects

In addition to the examples presented in section 2.1-2.3 several other persistent
aspects can be identified. Versioning is an aspect which cross-cuts both objects and
classes in an object-oriented database (assuming the system supports both object and
class versioning). Constraints can be considered as an aspect of the object database.
Traditionally constraints are specified at the application level or through a DBMS
service. Considering constraints an aspect of database entities and providing a
concrete abstraction simplifies their specification and management. Access rights,
security and data representation can also be regarded as aspects. All these aspects
cross-cut persistent entities residing in a database and are persistent by nature.

3 A Model for Aspect Persistence

Section 2 presented several scenarios where aspect persistence is an essential
requirement. This section proposes a model for aspect persistence. The model is based
on the following observations:
1. Object database management systems often require that classes whose instances

are to be stored in the database extend a system provided Persistent Root Class.
Examples of such systems include the Object Data Management Group (ODMG)
standard [4], O2 [15] and Jasmine [6].

www.manaraa.com

On to Aspect Persistence 31

2. Due to proprietary restrictions it is not possible to modify the system classes
implementing the persistence model of the object database management system
being used.

3. Most object database management systems employ the persistence by reachability
principle. When a transaction commits all objects reachable from a persistent
object are made persistent. Examples of such systems include the ODMG standard
[4], O2 [15] Jasmine [6] and Object Store [16].

4. Persistence is a cross-cutting concern in a system [12, 21].
5. There are various AOP approaches available e.g. AspectJ [2], Composition Filters

[1], HyperJ [5], Adaptive Programming [10, 13], etc. All these approaches aim at
achieving a better separation of concerns. However, the aspect structures employed
for the purpose vary considerably.

6. Aspect languages and aspect structures are continuously evolving as AOP
technologies mature.

Persistent Root Class

…

…

Persistent Root
Aspect

Separates Aspect
Persistence by
Reachability from
the Persistent
Root Class

Aspect
Persistence

Separates the
Aspect Persistence
Approach from
the Persistent
Aspects

Woven into Woven into

Application Class

…

…

Application Aspect

…
Woven into

Class Aspect Weaving ExtendsLegend

Fig. 4. The Aspect Persistence Model.

The persistence model is shown in Fig. 4. All application classes extend the Persistent
Root Class offered by the particular object database management system. A similar
mechanism is employed for making application aspects persistent. All application
aspects extend a Persistent Root Aspect. This is a natural extension of the persistence
model employed by several object database management systems (observation 1).
Since it is not possible to modify the system classes implementing the persistence
model of the object database management system (observation 2), all links between
aspects and classes have been kept strictly class directional i.e. the aspects know
about the classes but not vice versa [8]. This also facilitates the modification and
reuse of the aspect code [8] (as discussed later) and avoids introduction of additional
evolution complexity.

www.manaraa.com

Awais Rashid 32

When a transaction commits all aspects reachable from a persistent object are made
persistent (observation 3). As shown in Fig. 5 Aspect 1 is an instance of an aspect
extending the Persistent Root Aspect and reachable from a persistent object Object 1.
It is, therefore, made persistent. Although Aspect 2 is also an instance of an aspect
extending the Persistent Root Aspect it will not be made persistent as it is not
reachable from any persistent objects in the scope of the transaction. Aspect 3 poses
an interesting scenario. It is reachable from a persistent object but is not an instance of
an aspect extending the Persistent Root Aspect. It will be coerced into persistence in
order to preserve persistence by reachability. The coercion strategy can be to force the
aspect to extend the Persistent Root Aspect or to annotate the particular aspect
instance (Aspect 3) with persistence-related code. The choice of coercion strategy has
been left to the implementation of the model. It should be noted that aspect
persistence by reachability is transitive in nature i.e. not only aspects reachable from
persistent objects are made persistent but also aspects reachable from persistent
aspects are transitively made persistent.

Object 1

Object 2

Object 3

Aspect 1

Aspect 2

Aspect 3

Persistent
Root Aspect

Aspect ExtendsLegend Object ReachabilityAspect Instance

Transaction

Fig. 5. Aspect Persistence by Reachability.

As shown in Fig. 4 the Persistent Root Aspect encapsulates the persistence by
reachability code. This code defines the behaviour of an aspect transitively reachable
from a persistent object upon transaction commit. Since all application aspects extend
the Persistent Root Aspect the behaviour is propagated down the hierarchy. Reflecting
on observations 4, 5 and 6 persistence has been regarded as an aspect of the persistent
aspects (cf. Fig. 4). The persistence approach is separated from the persistent aspects
through the Aspect Persistence aspect. This makes the model independent of a
particular AOP approach because the persistent aspects do not encapsulate the
knowledge about their storage structure (which largely depends on the particular AOP
approach being employed). It also localises the changes resulting from the evolution
of the aspect language or the aspect structure making maintenance and modifications
to the persistence model inexpensive. Such changes are further aided by the class-
directional nature of links between aspects and classes.

www.manaraa.com

On to Aspect Persistence 33

4 PersAJ: An AspectJ Prototype

This section presents PersAJ (Persistent AspectJ), an implementation of the
persistence model using AspectJ (0.6beta2) from Xerox PARC and the Jasmine (1.21)
object database management system from Computer Associates. The implementation
is shown in Fig. 6. Application classes and aspects from the instance adaptation
scenario in section 2.2 have been used as an example. It should be noted that the
figure only depicts the code relating to the description in section 3. Other
implementation code has been omitted.

Class Aspect Weaving ExtendsLegend

PObject

…

void persist ()

PAspect

// other implementation specific code

crosscut PersistAspect(PObject p): p & void persist();

advice(PObject p): PersistAspect(p){
 after {
 Vector v = p.getAspects();
 Enumeration e = v.elements();
 while (e.hasMoreElements()) {
 PAspect asp = (PAspect)e.nextElement();
 asp.persist();
 }
 }
}

AspectPersistence

// other implementation specific code

introduction PAspect {
 void persist() {
 // method code
 }
}Woven into

Woven into

Person_Ver_1

…

…

Handlers
// handlers and other code

crosscut ReachableAspect(Person_Ver_1 p):p & new(..);

 static advice(Person_Ver_1 p): ReachableAspect(p) {
 after {
 new Handlers().addObject(p);
 }
 }

Woven into

PRC

Fig. 6. PersAJ: An Implementation of the Persistence Model Using AspectJ (0.6beta2).

PRC is the Persistent Root Class in the Jasmine Persistent Java binding (pJ). This
class is extended by all Java classes whose instances are to be stored in the Jasmine
database. Since no information is available about the PRC class, we have introduced
the class PObject which acts as the Persistent Root Class for all application classes in
PersAJ (in this case Person_Ver_1). PObject has a special instance-level method
called persist() which is invoked for all persistent objects (identified through
persistence by reachability) just before a transaction commits. This is achieved by
providing wrappers around the Jasmine transaction commit operation. PAspect is the
Persistent Root Aspect in PersAJ and is extended by all persistent application aspects
(in this case Handlers). The application aspects implement a special static advice
making the aspect instance reachable from the associated class object being
instantiated. The advice shown in PAspect (cf. Fig. 6) determines all reachable aspects
from a persistent object after the persist() method has been invoked (upon transaction
commit). All reachable aspects are made persistent through a call to the persist()

www.manaraa.com

Awais Rashid 34

method for the aspect instance. The persist() method is introduced into PAspect by
the AspectPersistence aspect which separates the persistence approach and storage
structure from the aspects being made persistent.
The Jasmine Persistent Java binding (pJ) offers a Java Persistence Processor (JPP): a
code generator which adds persistence capability to a Java class by adding code to its
definition. It also generates a corresponding schema definition for the underlying
Jasmine database system. PersAJ employs a simple script which runs the AspectJ
compiler in the preprocess mode. The code generated by AspectJ is passed to a
custom built parser which parses the generated class definitions and replaces any $
signs with two underscores. This is essential as AspectJ uses $ signs to differentiate
generated code from the Java code supplied by the programmer while Jasmine regards
$ as a reserved character. The class definitions produced by the parser are passed to
the Jasmine Persistence Processor which adds the persistence related code and
generates the database schema. Instances of the processed classes and aspects can
now be stored in the database.

5 Open Issues

This paper introduces the idea of persistent aspects. One of the open research issues is
the persistent representation of an aspect. Due to the different aspect representations
e.g. AspectJ, Composition Filters, etc. used in application programs, persistent
representation of aspects needs careful exploration.
Persistent aspects and dynamic weaving introduce additional overhead at run-time
and can be feasible only with efficient weaving mechanisms. The development of
efficient weavers is therefore an important research issue.
One of the issues identified during development of PersAJ is the need for
parameterised aspects. This is not supported in the AspectJ implementation (0.6beta2)
due to the lack of parametric polymorphism in Java. If aspect parameterisation is
available the implementation can be more generic and maintainable. An aspect can be
parameterised by classes in which it is to be woven, hence, making the join points and
crosscuts generic. Special weave parameters can be used to provide a generic
reconfiguration mechanism during dynamic weaving. It can also provide a solution
for the different aspect representations problem identified above. The representation
to be used can be determined by the aspect passed as a parameter making the
persistence model more transparent to the programmer.

6 Conclusions and Future Work

This paper has proposed an approach for aspect persistence. Aspect persistence is a
natural extension of existing work on lifetime of aspects. Although existing AOP
research has considered persistence as an aspect of a system, the need for aspect
persistence has been largely ignored. The novelty of this work is in identifying
concrete scenarios where aspect persistence is an essential requirement and providing
support for the purpose. The proposed aspect persistence model is independent of the

www.manaraa.com

On to Aspect Persistence 35

aspect language and the aspect representation employed by it. Persistence is
considered an aspect of the persistent aspects hence providing support for inexpensive
changes to the persistent representation of aspects due to changes in the aspect
language or the aspect structure. Class-directional links allow implementation of the
model without modifying the persistence model of the object database management
system being used. A prototype implementation of the model based on AspectJ
(0.6beta2) and Jasmine (1.21) object database management system validates the
concepts proposed in the paper.
At present AspectJ 0.7beta4 has been released. Our work in the immediate future will
involve porting the PersAJ implementation to the new release. We are also interested
in providing implementations of the model for other AOP approaches. At present the
persistent representation of aspects is handled by the Jasmine Java Persistence
Processor. We are interested in investigating various persistent representations of
aspects. We are particularly interested in developing an infrastructure mapping the
various aspect structures on to a common persistent representation and vice versa.
Such an infrastructure will serve as middleware between implementations of the
persistence model for different aspect languages and the common persistent
representation of aspects.

Note: The work reported in this paper is part of the Aspect-Oriented Databases
initiative at Lancaster which aims at bringing the notion of separation of concerns to
databases and providing aspect persistence mechanisms. Further information can be
found at: http://www.comp.lancs.ac.uk/computing/aod/

References

[1] Aksit, M. and Tekinerdogan, B., “Aspect-Oriented Programming using Composition
Filters”, Proceedings of the AOP Workshop at ECOOP’98, 1998

[2] AspectJ Home Page, http://aspectj.org/ , Xerox PARC, USA
[3] Bjornerstedt, A. and Hulten, C., “Version Control in an Object-Oriented Architecture”, In

Object-Oriented Concepts, Databases, and Applications (eds: Kim, W., Lochovsky,F. H.),
pp. 451-485, Addison-Wesley 1989

[4] Cattell, R. G. G., et al., “The Object Database Standard: ODMG 2.0”, Morgan
Kaufmann, c1997

[5] “Multi-dimension Separation of Concerns using Hyperspaces”,
http://www.research.ibm.com/hyperspace/

[6] “Jasmine 1.21 Documentation”, Computer Associates International, Inc., Fujitsu Limited,
c1996-98

[7] Kenens, P., et al., “An AOP Case with Static and Dynamic Aspects”, Proceedings of the
AOP Workshop at ECOOP ’98, 1998

[8] Kersten, M. A. and Murphy, G. C., “Atlas: A Case Study in Building a Web-based
Learning Environment using Aspect-oriented Programming”, Proc. of OOPSLA 1999,
ACM SIGPLAN Notices, Vol. 34, No. 10, Oct. 1999, pp. 340-352

[9] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., and Irwin,
J., “Aspect-Oriented Programming”, Proceedings of ECOOP’97, LNCS 1241, pp. 220-
242

[10] Lieberherr, K. J., “Demeter”, http://www.ccs.neu.edu/research/demeter/index.html

www.manaraa.com

Awais Rashid 36

[11] Matthijs, F., et al., “Aspects should not Die”, Proceedings of the AOP Workshop at
ECOOP’97, 1997

[12] Mens, K., Lopes, C., Tekinerdogan, B., and Kiczales, G., “Aspect-Oriented Programming
Workshop Report”, ECOOP’97 Workshop Reader, LNCS 1357, pp. 483-496

[13] Mezini, M. and Lieberherr, K. J., “Adaptive Plug-and-Play Components for Evolutionary
Software Development”, Proceedings of OOPSLA 1998, ACM SIGPLAN Notices, Vol.
33, No. 10, Oct. 1998, pp. 97-116

[14] Monk, S. and Sommerville, I., “Schema Evolution in OODBs Using Class Versioning”,
SIGMOD Record, Vol. 22, No. 3, Sept. 1993, pp. 16-22

[15] “The O2 System - Release 5.0 Documentation”, Ardent Software, c1998
[16] “Object Store C++ Release 4.02 Documentation”, Object Design Inc., c1996
[17] Pulvermueller, E., Klaeren, H., and Speck, A., “Aspects in Distributed Environments”,

Proceedings of GCSE 1999, Erfurt, Germany
[18] Rashid, A., Sawyer, P., and Pulvermueller, E., “A Flexible Approach for Instance

Adaptation during Class Versioning”, Proceedings of ECOOP 2000 OODB Symposium
(in publication as an LNCS volume by Springer-Verlag)

[19] Rashid, A. and Pulvermueller, E., “From Object-Oriented to Aspect-Oriented Databases”,
Proceedings of DEXA 2000, Lecture Notes in Computer Science 1873, pp. 125-134

[20] Skarra, A. H. and Zdonik, S. B., “The Management of Changing Types in an Object-
Oriented Database”, Proceedings of the 1st OOPSLA Conference, Sept. 1986, pp. 483-495

[21] Suzuki, J. and Yamamoto, Y., “Extending UML with Aspects: Aspect Support in the
Design Phase”, Proceedings of the 3rd AOP Workshop held in conjunction with
ECOOP’99

www.manaraa.com

G. Butler and S. Jarzabek (Eds.): GCSE 2000, LNCS 2177, pp. 37-54, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Symmetry Breaking in Software Patterns

James O. Coplien1 and Liping Zhao2

1 Bell Laboratories, ILIE00 2Z307, 263 Shuman Blvd, Naperville, IL 60566 USA
cope@research.bell-labs.com

2 Department of Computation, UMIST, P. O. Box 88, Manchester M60 1QD, UK
liping@co.umist.ac.uk

Abstract. Patterns have a longstanding identity in the scientific community as
results of a phenomenon called symmetry breaking. This article proposes a
formalism for software patterns through connections from software patterns to
symmetry and symmetry breaking. Specifically, we show (1) the ties from
Alexander's work to symmetry and symmetry-breaking foundations; (2) many
programming languages provide constructs that support symmetry; (3) software
patterns are the results of symmetry breaking, compensating for design
shortfalls in programming languages. The proposed pattern formalism may be
useful as a foundation for pattern taxonomies, and to differentiate patterns as a
design discipline from heuristics, rules, and arbitrary micro-architectures.

1 Introduction

Most contemporary attempts to formalize patterns (e.g., [14], [15]) ignore both the
prior art and the most relevant foundations for potential formalization. This paper
shows that symmetry lies at the very foundation of the pattern formalism. The paper
also shows that the symmetry formalism has historically been broad enough not only
for the natural sciences and Alexander's work, but that it can serve software as well.

Pattern and symmetry are closely related. The formation of pattern can be
characterized by symmetry operations, which, in the sense of classic symmetry, are
rigid motions of geometric object [33]. We believe that the geometric nature of classic
patterns has been the main inspiration of Alexander’s work ([1], [2], [3]). An early
realization of our research is that most of these structural properties relate to
symmetry. Leading software pattern practitioners have also recognized that the best
software patterns are also geometric in appearance and organization for reasons of
composability, which is in concert with Alexander's theories of patterns and centers.

The next section introduces symmetry concepts and group theory, which is the
prerequisite for the paper. Section 3 gives an overview to Alexander’s theory and its
connection to symmetry. Section 4 presents symmetry in O-O software. Sections 5
and 6 introduce symmetry breaking as a foundation for patterns. Section 7 illustrates
symmetry and symmetry breaking in programs and designs. Section 8 proposes a
formalism for software patterns. We conclude the paper in Section 9.

www.manaraa.com

James O. Coplien and Liping Zhao 38

2 Group Theory and Symmetry Concepts

Group theory offers constructs to formally characterize symmetry through symmetry
groups. This section gives a brief introduction to group theory and symmetry ([28], pp
9-10):

A group is a nonempty set G together with a law of composition
(a, b) ! ab : G × G → G satisfying the following four axioms:

1. Closure. For all a, b ∈ G, the set G is closed under composition: ab, ba ∈ G.
2. Associativity. For all a, b, c ∈ G, the composition is associative: (ab)c = a(bc).
3. Existence of An Identity Element. For all a ∈ G, there exists an element e ∈ G

such that ae = a = ea .
4. Existence of Inverses. For each a ∈ G, there exists an a-1

∈ G such that aa-1 = e
= a-1a.

A symmetry of an object is a transformation that leaves the object apparently

unchanged ([30], p.28). Classic symmetry transformations are rigid motions, such as
reflection, rotation, translation, and their combinations. For example, the appearance
of the human body is invariant under reflection such that the distances from any
origin point to its mirror image is preserved with respect to the reflection center.

Symmetry is more fundamentally about invariant change, i.e., change, yet the
same. In geometric sense, it means that objects don't stretch or deform as they are
translated or rotated. This basic idea extends the possibilities of symmetry beyond
geometric objects. For example, symmetry principles in physics, such as gauge
symmetries, obey symmetry properties but are not strictly geometric.

Rosen ([28], p.2) defines: "Symmetry is immunity to a possible change" in the
context of the broad field of natural sciences. Immunity to the change means that
some transformation brings the object into coincidence with itself. Symmetry means
invariant change or transformation invariant. Rosen defines a symmetry
transformation as a bijective (one-to-one and onto) mapping of a state to an image
state equivalent to the object state ([28], p.80). State equivalence is defined by an
equivalence relation for a state space of a system, such that any two states satisfy the
conditions of reflexivity, symmetry, and transitivity. A symmetry transformation S
can be denoted as:

 u
s

⎯ → ⎯ v ≡ u or S(u) = v ≡ u

for all states u ([28], p.80).

In the above definition, v ≡ u denotes the equivalence relation between the states v
and u. A subspace comprises a subset of states of a state space. An equivalence
subspace is a subspace within which all the states are equivalent to each other. This
leads to a general definition of symmetry group:

The set of all invertible symmetry transformations of a state space of a system
for an equivalence relation forms a group, a subgroup of the transformation

www.manaraa.com

Symmetry Breaking in Software Patterns 39

group, called the symmetry group of the system for the equivalence relation
([28], p. 80).

A symmetry group doesn't comprise objects (buildings, software objects) of a
system, but rather a set of symmetry transformations on these objects. The
symmetries we investigate in this paper are those that are expressed by programming
language constructs. The symmetry groups will be the compositions of symmetry
transformations embodied in programming language features with respect to a certain
set of invariants.

3 Alexander's Theories

Work on software patterns was largely inspired by Christopher Alexander's pattern
research and application in the fields of architecture and urban design. We
summarize Alexander’s work here.

3.1 A Geometric Basis

As an architect, Alexander deals with geometry. Alexander views geometry to be the
essence of what he was doing and this view is in line with Klein’s:

… in Klein’s words, ‘geometrical properties are characterised by their invariance under a
group of transformations.’ Each type of geometry has its own group … Group theory
provides the common ground that links different geometries ([30], p. 44).

3.2 Pattern

Alexander's publications on architecture in the late 1970s focused on design elements
called patterns [3]. Those patterns formed a pattern language, which can be
partitioned into numerous smaller pattern languages [1]. The goal of pattern
languages was to contribute to “the quality without a name,” a deep feeling of
architectural excellence suitable to a given culture

A pattern is a description of an architectural relationship between design parts. It
is also an architectural transformation that integrates parts into a larger whole.
Alexander’s patterns are geometric in nature. A pattern language allows a builder to
build a house by applying one pattern at a time, in sequence.

3.3 Theory of Geometric Centers

While the people using pattern languages had produced good community houses,
Alexander soon realized that pattern languages alone were inadequate to achieve the
beauty he sought. There were two problems: the economic processes of building
didn't support piecemeal growth, and the people using the pattern language had the

www.manaraa.com

James O. Coplien and Liping Zhao 40

skills necessary only for gross scales of beauty, not the very fine artisanship necessary
for wholeness at all scales. These concerns prompted him to develop a new theory
consistent with, but fundamentally different than, the theory of patterns. This theory
is based on geometric centers and a piecemeal growth process. Informally, a center is
something that draws the eye, a geometric region that we notice. Centers combine to
form geometrically attractive configurations. Patterns usually are stereotypical centers
that carry an aesthetic—likely culturally attuned—in addition to any visceral beauty
they may have. Centers drive more at the visceral beauty of pure geometry.

The process for building with centers is a simple process of structure-preserving
transformations. One finds the weakest center in a whole and strengthens it by
adding new centers that make it more whole. If the overall result is more whole, then
the process iterates to the next center. Each of these transformations increases
wholeness while preserving the structure of the whole, though there are adjustments
in the details. A given transformation can clean out a center that has become too
messy, but the overall structure is preserved.

In mathematical terms, a structure-preserving transformation is called a
homomorphism ([28], p.23). Briefly, a homomorphism is a many-to-one mapping
from one group to another. If a homomorphism is bijective, i.e., one-to-one and onto,
it is called an isomorphism. So an isomorphism is a bijective homomorphism.
Although homomorphism preserves structure, homomorphic groups do not have the
same structure unless they are isomorphic.

Each transformation strives to strengthen a center by reinforcing one or non-
orthogonal structural properties in the whole, including 15 structural properties like
Levels of Scale, Alternating Repetition, Local Symmetries, and Deep Interlock and
Ambiguity [2]. We note that most of the structural properties are directly linked to
symmetry. For example, Deep Interlock and Ambiguity and Alternating Repetition
exhibit bilateral symmetry, and Echoes exhibit translational symmetry. Many of these
structural properties show through in Alexander's patterns as City-Country Fingers [1]
which is an example of Deep Interlock and Ambiguity. Alexander emphasizes this:

There is a profound connection between the idea of a center, and the idea of
symmetry.
…

1. Most centers are symmetrical. This means that they have at least one
bilateral symmetry.

2. Even when centers are asymmetrical, they are always composed of smaller
elements or centers which are symmetrical ([4], p. 42-43).

4 Symmetry in Object-Oriented Software

In this section, we explore some examples of symmetry groups in object-oriented
programming languages.

www.manaraa.com

Symmetry Breaking in Software Patterns 41

4.1 A Geometry Basis for Software

Gabriel posited in 1996 that geometry, for us in computer science, translates to the
structure of the code ([7], p. 34). That is one geometry of a program, but there are
others, including its modular [8] and temporal [9] structure. Coplien's more recent
work [13] attempted to establish a geometric basis for C++ idioms for types whose
operations have inverses. That effort was an attempt to bring some of the popular
Design Patterns [16], which draw in part on those idioms, better in line with
Alexander's geometric theories.

Here we attempt to explore symmetry in software from the perspectives of group
theory. And interestingly, if one goes back before patterns to the very basics of
polymorphism, one finds applicability of group theoretic foundations for object
orientation to be strikingly strong despite the fact that no popular link ever joined the
two fields. Consider this quote from a plant physiologist in a math journal circa 1986:

…new theories of symmetry treat as equal also such objects (such equalities)
which were considered as essentially different in previous theories
(respectively, as inequalities). The unique reason why these equalities have
been adopted is always the same thing, i.e. the existence of real or/and mental
operations making the objects O, compared in features F, indistinguishable.
([32], p. 396)

This is almost a textbook definition of (object-oriented) polymorphism.

4.2 Classification as Symmetry

A class in an object-oriented program defines a symmetry. The common knowledge
of the class concept is related to abstract data type and encapsulation. However, we
can also say that a class classifies objects. A class establishes an invariance
relationship between the class and its objects and makes all its objects analogues with
respect to the class structure. Class data and functions remain valid to all the objects.
A class in this sense defines an analogy, which is a symmetry ([28], p. 164).

We can validate the symmetry of a class using Rosen’s definition. Recall from
Section 2 that symmetry is immunity to a possible change. We can analyze the two
aspects of change and invariance as follows:

1. Change. A class can be applied to more than one object; the objects to which

it is applied can be switched from one to another.
2. Invariance. The class structure is immune to the switching-abouts of objects,

i.e., what it is true remains true.

Recall also from Section 2 that changes are represented by transformations. The

above shows that the order of the objects in a class is immaterial. Mathematically, we
can represent the changing orders, switching-abouts as a set of transformations. We
can show that these transformations form a group. For example, changing object o1 to
o2 to o3 is equivalent to changing from o1 to o3. This is the closure property of the

www.manaraa.com

James O. Coplien and Liping Zhao 42

group. Changing is associative, in either direction (inverses); no changing is the
identity transformation. A formal proof of these four properties will appear in a
separate paper.

A linguistic realization of such transformations is the copy constructor, which
satisfies the four properties of the group. More importantly, such transformations are
implicit, and the fact that a user can create more than one object without worrying
about the sequence of the creation owes to the symmetry of the class.

It should be noted that many language features—inheritance, subtyping,
overloading, and others—are ways of expressing classification. By the above
analysis, all such features are related to symmetries.

4.3 Inheritance as Symmetry

Cook and Palsberg [5] define inheritance as an operation on generators that transform
a base class into a (distinct) derived class. In this section, we only consider one use of
the inheritance operation, i.e., the use of inheritance for type derivation or subtyping.
Only then can we say that inheritance preserves the structure of the base class. Other
uses of inheritance, such as for implementation convenience or function overriding,
do not preserve the class structure and therefore will not be considered here.

When inheritance is used for subtyping, it creates a type hierarchy [22]. A type
hierarchy consists of subtypes and supertypes, where objects of a subtype provide all
the behavior of objects of its supertype plus something extra [22]. A type hierarchy
satisfies the Liskov Substitution Principle (LSP):

If for each object o1 of type S there is an object o2 of type T such that for all
programs P defined in terms of T, the behavior of P is unchanged when o1 is
substituted for o2, them S is a subtype of T. [22]

That is, there are invariants (in this case, behavioral invariants) that hold for a
program under a transformation that substitutes objects of type S for those of type T.
Behavior is symmetric with respect to subtyping—only here, the constancy of
behavior is itself the litmus test by which subtyping is judged, not vice versa.

Given a subtyping path in a type hierarchy, we say that classes belonging to this
path are equivalent in that they have the same invariants as the base class. We define
all the classes in such a single path as a set or a state space as per Rosen’s definition
in Section 2. We define an equivalence relation for this set as the base invariant
equivalence, denoted as ≡ , such that it holds for any pair of the classes, e.g., x, y, z,
in the set:

1. Reflexivity. x ≡ x for all x (Every class of the set is equivalent to itself).
2. Symmetry. x ≡ y ⇔ y ≡ x for all x, y (Any pair of classes is equivalent).
3. Transitivity. x ≡ y, y ≡ z ⇒ x ≡ z for all x, y, z.

In Section 2 we give the definition that a symmetry transformation is a bijective

(one-to-one and onto) mapping of a state to an image state equivalent to the object
state in a state space for an equivalence relation. Here the state space is a set of

www.manaraa.com

Symmetry Breaking in Software Patterns 43

classes of a given subtyping path. States in this state space correspond to classes. We
represent an inheritance operation or derivation as D such that:

x

D
⎯ → ⎯ ⎯ y ≡ x or D(x) = y ≡ x

for all classes x in the set.

We now prove an inheritance operation is a symmetry transformation. Consequently,
we need to prove (1) an inheritance operation is invertible and (2) the set of
inheritance operations for a set of classes as defined above form a symmetry group.

To prove the invertibility of the inheritance operation, we need to show:

y

D − 1
⎯ → ⎯ ⎯ ⎯ x ≡ y or D

− 1
(y) = x ≡ y

for all classes y in the set.

What is the inverse of the inheritance operation? Programming languages are
graced with pragmatics that are not pure theory, and there is rarely a corresponding
language realization of the operation that derives from a subtype to a supertype, i.e., a
supertype cannot inherit from a subtype. However, for example, the (now vestigial)
class slicing feature of C++ is a way to restore the original state of the system when
an instance of some class is supplied in a context where a less derived class is
expected. From this point of view, a slicing operation corresponds to or plays a role of
inverse. In other programming languages, inverses might be implemented through
conversion operators or constructors (e.g. in Smalltalk, many algebraic types respond
to messages such as asInteger).

Since our goal is to establish a formalism for patterns, we can still define an
inverse of an inheritance operation as a mathematical operation whose linguistic
support is missing for practical reasons. Hence we have the inheritance operation
whose inverse remains to be mathematical.

We shall now prove that the set of all invertible inheritance operations on the
classes in a given subtyping path forms a symmetry group.

1. Inverses exist in the sense of the above assumption.
2. Closure follows from transitivity of the equivalence relation. For the inheritance

operation D on all classes x, y, and z, the composition of DD is the result of
consecutive application of D, such that:

x ≡ y = D(x),
y ≡ z = D(y) = D(D(x)) = (DD)(x),
x ≡ z = (DD)(x),
x ≡ z = D2(x)

Thus for the inheritance operation D their compositions D2, D3, … are also
inheritance operations.

www.manaraa.com

James O. Coplien and Liping Zhao 44

3. Associativety holds for composition by consecutive application. It is evident that
using the closure property, we can obtain:
D(DD) = (DD)D = D3
Hence we have proved the associativity.

4. The identity transformation is a null inheritance operation. In other word, it is a do-
nothing operation, such that:

x
I

⎯ → ⎯ x ≡ x or I(x) = x ≡ x
for all classes x in the set.

All the invertible inheritance operations on the classes through a single subtyping

path form a symmetry group for class invariants. We may consider inheritance
operations as translations that transform classes in time [33]. We can represent such
translational symmetries as a linear train of iterations:

… D-3 = D-1D-1D-1, D-2 = D-1D-1, D-1, D0 = I, D1 = D, D2 = DD, D3 = DDD, …

Translation and other temporal symmetries (transformation over time) are common

themes in computer programs, as we shall also see in Section 4.4. In fact, temporal
symmetry is a fundamental phenomenon in symmetry breaking in the natural
sciences. For example, the idea that time is reversible is called the T symmetry in the
classic CPT symmetry model of physics; symmetry breaking in all of these
symmetries is the very reason that anything exists ([19], pp. 79-81).

Generalizing the ideas of classification and temporal symmetry, we can define
symmetry in terms of any invariant or notion of equality ([32], pp. 395-396) for a
system under consideration.

4.4 Overloaded Operators as Symmetries

Operator overloading, and associated friendship relationships in C++, have
consciously been provided to express symmetry ([21], p749). Overloaded arithmetic
operators support reflection symmetry, freeing the user from distinguishing between
the left and the right operands, as A+B = B+A and A*B = B*A.

Overloaded operators not only can support reflection, but also translation as well.
For example, overloaded “+”, “-”, “*”, “/” free the user from distinguishing between
primitive numbers and objects.

5 Symmetry Breaking and Pattern

When a system encounters stress it loses symmetry. The phenomenon of symmetry
breaking may be explained in terms of symmetry groups. Consider the common
example of a proto-planet rotating in space, a sphere of symmetry group O(3). If it
spins too fast it may become pear-shaped, losing one degree of symmetry so as to fall
into O(2). If the spinning continues it may break into a planet/moon system which
still has overall symmetry O(2), though it has lost the spherical symmetry of the
original system. This is called spontaneous symmetry breaking in physics [24], or
symmetry-breaking as we call it here. Symmetry doesn't really "break", but is just

www.manaraa.com

Symmetry Breaking in Software Patterns 45

reduced or redistributed in the effect produced by symmetry in the cause. When a
symmetry group is broken, it results in a new group that is a subgroup of the original.
Note in this moon-formation example, each of the parts still has O(3) symmetry, even
though the system has been reduced to O(2).

Symmetry breaking results in patterns, or more precisely, reveals patterns, for too
much symmetry isn’t perceived as pattern [30]. For example, a regular n-sided
polygon belongs to the dihedral group Dn. When n is infinitely large, the polygon is
close to a circle, which isn't rich in structure. But if some of the symmetries in this
polygon break, or when n becomes smaller, say, 6, 5, 4, or 3, we begin to see the
shape of the polygon. The phenomenon of symmetry-breaking was first discovered in
1923 by Ingram Taylor when studied the dynamics of the fluid flow, which was
known as hydrodynamic “symmetry paradox”:

This paradox, that symmetry can get lost between cause and effect, is called
symmetry-breaking. In recent years scientists and mathematicians have begun
to realize that it plays a major role in the formation of patterns.

…

From the smallest scales to the largest, many of nature's patterns are a result of
broken symmetry; and our aim is to open your eyes to their mathematical unity.
([30], p. xviii)

The idea of symmetry breaking carries through to Alexander's patterns. Varied
Ceiling Heights [1] is a symmetry-breaking pattern. Light on Two Sides of Every
Room [1] is another example: a perfectly symmetric room would have either no
windows or would have windows on four sides. A room with windows on four sides
would be perfectly symmetric and would lack the quality Alexander seeks in his
work. He remarked that too much symmetry is a bad thing:

Living things, though often symmetrical, rarely have perfect symmetry. Indeed
perfect symmetry is often a mark of death in things, rather than life.

I believe the lack of clarity in the subject has arisen because of a failure to
distinguish overall symmetry from local symmetries. ([2], The Phenomenon of
Life, 44.)

and:

In general, a large symmetry of the simplified neoclassicist type rarely
contributes to the life of a thing, because in any complex whole in the world,
there are nearly always complex, asymmetrical forces at work—matters of
location, and context, and function—which require that symmetry be broken.
([2], The Phenomenon of Life, 45.)

Symmetry breaking also plays an important role in the characterization of
Alexander’s 15 structural properties. Local Symmetry requires some symmetry be
broken. Roughness, Gradients, Echoes, and Levels of Scale all exhibit symmetry, but
lack perfect symmetry characteristic of the next largest symmetry groups (perfect
smoothness, bilateral symmetry, and equal size).

www.manaraa.com

James O. Coplien and Liping Zhao 46

The idea of symmetry breaking also extends to software patterns, as we shall see in
Sections 6 and 7. For example, class extension is a symmetry; Bridge is a pattern that
reflects symmetry breaking under the stress of certain design desiderata.

6 Patterns and Symmetry Breaking in Software

As discussed in Section 4, many programming language constructs express symmetry.
When those constructs fail to solve design problems, programmers often resort to
patterns to express the design in the programming language. This section attempts to
show that most software patterns are a result of symmetry breaking.

6.1 Breaking Type Symmetry

Assume we have a class, List<T> in some library. We wish to derive from it a new
type, Set<T>. Let’s see if such derivation can preserve class invariants in List<T>,
as discussed in Section 4.3.

First, a set is not a subtype of a list, nor is the reverse true. For example, by the
principle of extensionability, sets with the same members are equal [17]. So adding
the same member twice to a set is the same as adding the member only once.
However, adding the same member twice to a list is different from a single insertion.

Therefore, deriving a set from a list breaks the symmetry that subtyping attempts to
conserve. We start with a List and want to transform it into a Set. The symmetry
breaks. Where does it go?

Imagine if the symmetry did not break, i.e., in the normal subtyping situation, the
relationship between a subtype and its supertype would be denoted as in Figure 1.
However, since the symmetry is broken, the new relationship lacks the symmetry of
Figure 1, reflecting only local symmetry (Figure 2). This is known as the Adapter
pattern. In this pattern, the insert and has methods appear in all three classes.

Fig. 1. Inheritance Symmetry.

m3(arg)

m1’(arg)
m2’(arg)
m3’(arg)

m2(arg)
m1(arg)

www.manaraa.com

Symmetry Breaking in Software Patterns 47

Most of the structural patterns (Adapter, Bridge, Composite, Decorator, and Proxy)

[16] deal with the tension between language constructs that express symmetries, and
the small perturbations that make those constructs unsuitable for use. Some of the
behavioral patterns (Iterator, Memento, Observer, State, Strategy, Template Method,
and Visitor) can also be easily described in terms of temporal symmetry breaking.
Other design patterns take more imagination to describe in symmetry-breaking terms,
which raises the question of whether they are patterns in the Alexandrian vein.

From the perspective of symmetry breaking, a pattern is a way of redistributing the
forces in a symmetric system in light of some instability. Symmetry is reduced, but
not lost; it is redistributed in the pattern. The exact way in which it is redistributed is
difficult to predict. Global symmetries are lost, but local symmetries are preserved.

We want to point out here that the term local symmetry is not an original
Alexandrian formulation, but is a standard term in the symmetry group communities
of crystallography ([23], p. 29; [29], p. 567) and quantum physics ([24], p. 173).

6.2 Breaking Function Symmetry

Multiple dispatch is a form of symmetry breaking. In a Liskov type hierarchy, subtype
methods have a level of equivalent semantics defined by the bounds of pre- and
postconditions, semantics that programmers usually associate (however informally)
with the method selector. In a classful language these symmetries in a type hierarchy
preserve class invariants, as discussed in Section 4.3.

When a type hierarchy is used for dynamic binding, a member function is chosen
according to the type of its instance at run time. The symmetry breaks if the member

insert(arg)
has(arg)

insert(arg)
has(arg)

insert(arg)
has(arg)
sort()

List<T> Set<T>

SetUsingList<T>

implementation

List<T>::has(arg)

 Insertion with
 uniqueness, invoking
 List<T>::insert

Fig. 2. Adapter Pattern.

www.manaraa.com

James O. Coplien and Liping Zhao 48

function depends on the types of more than one object; the LSP no longer holds. .
This is a form of symmetry breaking for which the longstanding linguistic solution is
multiple dispatch. This of course is the Visitor pattern [16].

The "Promote and Add" pattern is also symmetry breaking. The “+” operator is
interesting not only because it supports symmetries as discussed in Section 4.4, but
also because it has a highly symmetric signature:

T x T → T

If we picture “+” operating between pairs of objects, where each object participates
in a class hierarchy, we get a nicely symmetric picture as in Figure 3.

 Complex Complex

 Co mplex

+

 Real Real

 Rea l

+

Integer Integer

 Integer

+

Figure 3. Bilateral Symmetry
But reality is messier because of the need for heterogeneous addition. For

example, it makes sense to ask for 1 + 4.5, as in Figure 4—a broken symmetry (and
it's independent of multiple dispatch or polymorphism).

The solution is a geometric transformation, a pattern, called Promote and Add,
originally written up as a C++ idiom [13], but which can also appear in broad
architectural contexts as patterns such as Add a Switch [9]. It adds local symmetries
by promoting heir types to their parent types as a prelude to addition, thereby
reducing the problem to that of the first picture. It is a structure-preserving
transformation that adds centers (the transformations from derived types to base
types) to the first picture. The resulting Smalltalk bears out the pattern explicitly in
methods such as sumFromInteger, asDouble, and
ArithmeticValue>>retry.

www.manaraa.com

Symmetry Breaking in Software Patterns 49

 Complex Complex

 Real Real

 Complex?

+

 Integer Integer

Figure 4. Symmetry Breaking in +

6.3 Breaking Class Symmetry

We usually think of types as abstract specifications with classes as their language
realizations. The class structure often follows the type structure. But sometimes,
even though the type structure reflects a structure-preserving transformation
consistent with the LSP, the class structure does not preserve structure for reasons that
owe to language implementation peculiarities. This means that the symmetry of the
class structure is broken, and a pattern usually results.

Again consider class Complex, whose implementation is two real numbers.
Abstractly we can talk of the symmetry group of type Complex as comprising
transformations that preserve class invariants as discussed in Section 4.2. These
invariants hold, with respect to member function behavior (type symmetry) for heir
classes such as Real and Integer, as one would expect.

Even though the member functions are preserved in the transformations from
Complex to derived types, the structure of the Complex class may not be preserved
in Real and Integer. In particular, Complex has two reals and Real would
have only one. Eiffel would call this restriction inheritance ([27], p. 826). In the
representation of the class, there is at best a weakened symmetry between Complex
and Real (one could argue that they are symmetric with respect to the preservation
of the real component) but all structure is lost by the time we get to Integer.
Symmetry slowly breaks as we descend the hierarchy. We find the same case for
Ellipse and Circle, as in Meyer ([27], p. 467).

In either of the cases, we lose symmetry when the inheritance transformation is not
structure preserving as required in the LSP, so we have symmetry breaking. What
results is usually a pattern; in this case, something like Bridge might be in order.

www.manaraa.com

James O. Coplien and Liping Zhao 50

7 Other Examples

We can look beyond object-oriented programming language constructs to find many
examples of symmetries and symmetry breaking in software design.

Symmetries abound in programs and can be found beneath almost all programming
structures. In addition to symmetries we have discussed in Section 4, loops are spiral
time symmetries. Simple conditionals can be viewed as symmetry breaking, while
case statements can also be viewed as symmetries that hold the entry and exit points
invariant. Argument defaulting is a form of overloading where the symmetry is the
preservation of some argument types. Rather than focusing on these programming-in-
the-small symmetries, in this paper we focus on the design structures that are of
greater interest to the field of object orientation.

Patterns are introduced as a result of symmetry breaking in all of these cases. We
showed above, in Section 6.2.2, what happened when the symmetry of overloaded
operator + broke. This is hardly an object-oriented phenomenon, either. The work in
[10] introduced the notion that functional and applicative languages may succumb to
these analyses more readily than object-oriented languages do, owing to the largely
geometric nature of the source and translated program structures.

The symmetries supported by language constructs might be used as a basis for
objectively comparing the relative expressive power of a programming language. For
example, the number of symmetries and the type of symmetry might be used as such
an objective indicator. We suggest further empirical work in this area.

We find patterns outside the programming language context, too. Patterns such as
Half Object plus Protocol (HOPP) [25] are an obvious example of symmetry-
breaking reminiscent of bifurcation symmetry. It should be noted that there is nothing
fundamental about the system in which HOPP is embedded that suggests that
symmetry break in a way that results in two objects; it could just as well break into
three objects, as it does in the pattern Three-Part Call Processing [9].

In the Cascade pattern for a public transport system [34], it was observed that both
the driver duty object and its builder were cascades. A driver duty can be seen as a
result of a translation of its builder (the Prototype pattern) or as a rotated bilateral
symmetry. Other examples in telecommunication software are documented in [9].

Model-View-Controller expresses symmetry between a Model object and a User
object. What breaks the symmetry is the need for the User object to maintain
multiple views of the Model. That gives rise to the View object itself, and to the
Controller as a dispatcher from the User to the Model and View. [Trygve Reenskaug,
Personal conversation, June 1999].

Fresh Work before Stale [26] is a classic example of temporal symmetry breaking.
The pattern creates a broken symmetry in the flow of work that gives priority to new
work over pending work, and throughput increases as a result.

Factory Method and Abstract Factory [16] break the symmetry of the structures of
the object produced by instantiation processes. Template Method breaks the
symmetry of individual algorithms.

Domain analysis techniques are rooted in axioms of commonality and variation
[11]. Group theory may provide constructs for formalizing this structure as well:
symmetry is about commonality invariance; symmetry breaking is about variations.

www.manaraa.com

Symmetry Breaking in Software Patterns 51

8 Towards a Pattern Formalism

So, what is a pattern? The question is the closest thing to a religious debate in
computer science since the debate raged about “What is object orientation?” There
are many qualities often used to distinguish, or sometimes distance, patterns from
mainstream academic computer science. Among these are beauty, maturity of ideas,
and attunement to human comfort. Here we try to put these elements in perspective.

Does Alexander's stipulation that a pattern only exists within a pattern language
([3], p. 312) relate to symmetry and symmetry breaking? Remember that a pattern is
a transformation, a transformation that breaks some symmetry present in the original
system, adding asymmetry. The original system defines context; without that context,
there may in fact be no symmetry to be broken. What might otherwise pass as a
pattern, out of context, may simply be a symmetry. We can also explain the
relationship between symmetry and symmetry breaking as a causal relationship: the
original system exhibiting the original symmetry is the cause; the transformed system
in which some symmetry is broken is an effect.

As mentioned early, broken symmetry doesn’t necessarily mean asymmetry unless
all the symmetry is lost. Although it is not the topic of this article, we wish to point
out that symmetry only exists with respect to asymmetry ([28], p. 161) and
asymmetry is a frame of reference to symmetry.

One may criticize the design patterns [16] as not meeting the Alexandrian criterion
of necessarily emanating from a whole, from a pattern language. However, some of
the design patterns constitute patterns that form a pattern language for a particular
design problem. Symmetries that these patterns attempt to preserve or break may be
identified. This leaves hope that the design patterns may be legitimized as patterns in
a fashion tantamount to, or at least analogous to, the closely related idioms work [13].

One key suggestion for future work is to show that a pattern language forms a
contextual framework for the formalization of symmetry breaking (the very definition
of individual patterns), and that such a framework forms not only a language, but also
an algebra of specification. The outcome seems likely; after all, a geometry is
essentially an algebra of symmetries.

Based on the above analysis, we posit the following formal definition of a pattern:

Definition: A pattern characterizes a structure resulted from breaking an
original symmetry, where the symmetry is defined in terms of an invariant in a
system. Examples of such invariants include class structure (in the vulgar sense
as in Section 4.2) and behavior (subtyping as discussed in Section 4.3).

In other words, a pattern represents a symmetry effect that is less symmetric
than the symmetry cause, where the symmetry cause is produced by a
programming language construct. Patterns precipitate from symmetries in
response to both internal and external forces that are the analogy of instability.

A pattern is a design solution that language constructs fail to provide. A
pattern language defines a composition law for composing patterns in a specific
way to solve a larger design problem. A pattern is in relation to a symmetry that
in turn is in relation to a geometric context: a symmetry group.

The formal aspect of the definition is necessary but not sufficient. The
articulation of a pattern is also subject to a value system, and in particular to

www.manaraa.com

James O. Coplien and Liping Zhao 52

aesthetic and quality considerations. Among these considerations are human
comfort, utility, beauty, durability, and maintainability.

This definition is simply a distillation of the findings of this paper, cast in a way

that ties the group theoretic foundations with the vernacular definitions. We propose
it as a foundation for further work in the formalization of software patterns.

One might use this definition to conclude that because the design patterns reflect
different geometric contexts, they could never all be unified in a single pattern
language. For example, the context for Observer and Memento is temporal symmetry
while the context for most other patterns is more spatial. This contextual modeling
might provide a framework for a pattern taxonomy that would be more useful than the
current taxonomy (creational, structural, etc.) for the stated purpose of a pattern
language: to create whole systems through a piecemeal growth process.

9 Conclusion and Acknowledgements

Other attempts to formalize patterns have striven for implementation automation.
That is not our goal here, as automation of pattern assembly is an oxymoron from first
principles. Our goal is to provide a formal basis for the characterization of patterns in
specific contexts. For example, the symmetry theory foundation for patterns explains
why multiple dispatch is a pattern in Smalltalk, and is not a pattern in CLOS. It
explains why inheritance for subtyping is a symmetry, lacking the symmetry-breaking
properties that are characteristic of patterns, even though Inheritance wrongly appears
as a pattern in some collections [31]. This model may provide a foundation for
legitimizing other patterns on the basis of temporal symmetry breaking models, even
hopelessly non-spatial patterns.

This paper deals with patterns commonly associated with design. There may be
other useful patterns of programming, such as indentation style and other modular
constructs, that also exhibit symmetry and symmetry breaking and which are equally
important to the success of software development.

Ralph Johnson provided initial feedback to the original draft and has continuously
provided valuable insights and comments to various versions of the paper. We are
also deeply indebted to Michael Benedikt, Ellie D'Hondt, Maja D'Hondt, Ed Remmel,
Curtis Tuckey, Gottfried Chen, Edith Adan-Bante, Peter Mataga, Rachel Suddeth,
Kevlin Henney, Neil Harrison, Rich Delzenero, Christoph Koegl, and Peter Grogono.

References

[1] Alexander, C., et al. A Pattern Language. New York: Oxford, ©1977.
[2] Alexander, C. The Nature of Order. Pending publication by Oxford, New York, New

York. Citations quoted with permission.
[3] Alexander, C. The Timeless Way of Building. New York: Oxford, ©1979.
[4] Alexander, C. A Foreshadowing of 21st Century Art: The Color and Geometry of Very

Early Turkish Carpets. New York: Oxford University Press, ©1993.

www.manaraa.com

Symmetry Breaking in Software Patterns 53

[5] Cook, W., and J. Palsberg. A Denotational Semantics of Inheritance and its Correctness.
IN OOPSLA '89 Conference Proceedings, SIGPLAN Notices 24(10), 1989. New York:
ACM SIGPLAN, p. 436.

[6] Coplien, J. Advanced C++ Programming Styles and Idioms. Reading, MA: Addison-
Wesley, ©1992.

[7] Coplien, J. Software Patterns. New York: SIGS Publications, ©1996.
[8] Coplien, J. Space: The Final Frontier. C++ Report 10(3). New York: SIGS Publications,

March 1998, 11-17.
[9] Coplien, J. Worth a Thousand Words. C++ Report 10(5). New York: SIGS Publications,

May/June 1998, ff. 54.
[10] Coplien, J. To Iterate is Human, to Recurse, Divine. C++ Report 10(7). New York: SIGS

Publications, July/August 1998, 43-48; 51.
[11] Coplien, J. Multi-Paradigm Design for C++. Addison Wesley, Reading MA. 1999. ISBN

0-201-82467-1
[12] Coplien, J. Take Me Out to the Ball Game. C++ Report 11(5). New York: SIGS

Publications, May 1999, 52-8.
[13] Coplien, J. C++ Idioms Patterns. In Pattern Languages of Program Design 4. Reading,

MA: Addison-Wesley, ©2000.
[14] Eden, A. H., J. Gil, A. Yehudai. A Formal Language for Design Patterns. 3rd Annual

Conference on the Pattern Languages of Programs (Washington University Technical
Report WUCS-97-07).

[15] Eden. A. H., J. Gil, A. Yehudai. Precise Specification and Automatic Application of
Design Patterns. The Twelfth IEEE International Automated Software Engineering
Conference (ASE 1997).

[16] Gamma, E., et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, ©1996.

[17] Gordon, C. and N. Hindman. Elementary Set Theory. Hafner Press, 1975.
[18] Grenander, U. Elements of Pattern Theory. Baltimore, Maryland: Johns Hopkins

University Press, ©1996.
[19] Hawking, S. A Brief History of Time. New York: Bantam, ©1996.
[20] Kappraff, J. Connections: The Geometric Bridge Between Art and Science. McGraw-Hill,

1990.
[21] Lippman, S. B., and J. Lajoie. C++ Primer. 3rd Ed. Addison-Wesley, 1998.
[22] Liskov, B. Data Abstraction and Hierarchy. SIGPLAN Notices 23,5, May 1988, p. 25.
[23] Mackay, A. L. Generalized Crystallography. Computers & Mathematics With

Applications, 12B(1/2). Exeter, UK: Pergamon Press, 1986.
[24] Mannheim, P. D. Symmetry and Spontaneously Broken Symmetry in the Physics of

Elementary Particles. In Computers and Mathematics with Applications, 12B(1/2).
Exeter, UK: Pergamon Press, 1986, 169-183.

[25] Meszaros, G. Pattern: Half-Object plus Protocol (HOPP). In J. O. Coplien and D.
Schmidt, eds., Pattern Languages of Program Design, Reading, MA: Addison-Wesley,
©1996, Chapter 8, 129-132.

[26] Meszaros, G. A Pattern Language for Improving the Capacity of Reactive Systems. In
Pattern Languages of Program Design - 2. Reading, MA: Addison-Wesley, ©1998, p.
586, "Fresh Work Before Stale."

[27] Meyer, B. Object-Oriented Software Construction. Upper Saddle River, NJ: Prentice-
Hall, ©1997.

[28] Rosen, J. Symmetry in Science: An Introduction to the General Theory. New York:
Springer-Verlag, 1995.

www.manaraa.com

James O. Coplien and Liping Zhao 54

[29] Senechal, M. Geometry and Crystal Symmetry. In Computers and Mathematics with
Applications 12B(1/2). Exeter, UK: Pergamon Press, 1986.

[30] Stewart, I., and M. Golubitsky. Fearful Symmetry: Is God a Geometer? London:
Penguin, ©1992, 1993.

[31] Tichy, Walter. Essential Software Design Patterns,
http://wwwipd.ira.uka.de/~tichy/patterns/overview.html, n.d.

[32] Urmantsev, Y. Symmetry of System and System of Symmetry. Computers and
Mathematics with Applications, 12B(1/2). Exeter, UK: Pergamon Press, 1986, 379-405.

[33] Weyl, H. Symmetry. Princeton University Press, 1952.
[34] Zhao, L, and T. Foster. Driver Duty Constructor: A Pattern for Public Transport Systems.

In The Journal of Object-Oriented Programming 12(2), May 1999, 45-51; 77.

www.manaraa.com

Aspect Composition Applying the Design by

Contract Principle

Herbert Klaeren1, Elke Pulvermüller2, Awais Rashid3, and Andreas Speck1

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen
D-72076 Tübingen, Germany

{klaeren,speck}@informatik.uni-tuebingen.de
2 Institut für Programmstrukturen und Datenorganisation

University of Karlsruhe, D-76128 Karlsruhe, Germany
pulvermueller@acm.org

3 Computing Department, Lancaster University
Lancaster LA1 4YR, UK
marash@comp.lancs.ac.uk

Abstract. The composition of software units has been one of the main
research topics in computer science. This paper addresses the composi-
tion validation problem evolving in this context. It focuses on the compo-
sition for a certain kind of units called aspects. Aspects are a new concept
which is introduced by aspect-oriented programming aiming at a better
separation of concerns. Cross-cutting code is captured and localised in
these aspects. Some of the cross-cutting features which are expressed in
aspects cannot be woven with other features into the same application
since two features could be mutually exclusive. With a growing number
of aspects, manual control of these dependencies becomes error-prone or
even impossible. We show how assertions can be useful in this respect to
support the software developer.

1 Introduction

Composing systems from individual units has been one of the main research
goals in the software engineering discipline since its beginning in the 1960s.
The first approaches concentrating on modules were followed by decomposition
into objects and / or components [23,4,30,29]. All of these approaches aim at
managing complexity by dividing a system into smaller pieces.

Once a systems analyst completes the creative process of dividing the system
into manageable parts, phases follow where the units are realised and synthesised
to form the final system. The units themselves are built from scratch or reused if
they already exist provided they can be used in the chosen technical environment.

It has become popular to build systems not only for one purpose but to allow
variability to a certain extent. This is due to the goal to save development and
maintenance effort and increase software quality by reusing a system multiple
times even in slightly different contexts. This development is reflected in the
intensified research in the field of product line architectures (PLA) [27]. In a

G. Butler and S. Jarzabek (Eds.): GCSE 2000, LNCS 2177, pp. 57–69, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

www.manaraa.com

58 Herbert Klaeren et al.

concrete context the necessary and available units are reused and the points of
variability are adapted to the particular needs [10,8]. This results in a set of valid
configurations for one kind of system. The more configurations exist the more
flexible is the system concerning reuse and adaptation. However, an increase in
variability and flexibility poses a greater challenge in validating the configuration
of chosen units. The search for a valid configuration is error-prone if manually
practised. Therefore, there is a need for computer support. Such computer sup-
port is also realisable since rules can be used to specify valid configurations in
advance.

Aspect-oriented programming (AOP) introduces a new concept called aspects
[17]. Besides classes, they form an additional type of system unit. Aspects serve
to localise any cross-cutting code, i.e. code which cannot be encapsulated within
one class but which is tangled over many classes. The existence of this new type
of system unit affects the composition validation. Although some composition
validation mechanisms already exist [3,7], aspects have not been explicitly con-
sidered. In this paper we introduce a composition validation mechanism which
in particular concentrates on this new kind of system units.

In our approach we use the technique of assertions [21]. Assertions are a
widely accepted programming technique for complex systems to improve their
correctness. Taking the validity of a configuration as a property, assertions can be
used to ensure that the chosen aspects and classes fit together. In the following,
we provide further background information about aspect-oriented programming
and assertions which is necessary to understand the remainder. A motivating
example demonstrates the problem we address. Sections 3 to 5 describe our
different aspect composition validation approaches based on assertions. Section 6
concludes the paper and identifies directions for future work.

2 Background and Motivation

This paper is based on two techniques, i.e. aspect-oriented programming and
assertions. Here, assertions are used as a means to validate aspect composition.
In the following, the term “aspect composition” is used for the insertion of a set
of aspects into one system / class. This set is also called (aspect) configuration.

Aspect-oriented programming (AOP) [17] introduces a new concept, called
aspects, in order to improve separation of concerns. It aims at easing program
development by providing further support for modularisation at both design and
implementation level. Objects are designed and coded separately from code that
cross-cuts the objects. The latter is code which implements a non-functional fea-
ture that cannot be localised by means of object-oriented programming. Code
for debugging purposes or for object synchronisation, for instance, is tangled
over all classes whose instances have to be debugged or synchronised, respec-
tively. Although patterns [12] can help to deal with such cross-cutting code by
providing a guideline for a good structure, they are not available or suitable for
all cases and mostly provide only partial solutions to the code tangling problem.
With AOP, such cross-cutting code is encapsulated into separate constructs or

www.manaraa.com

Aspect Composition Applying the Design by Contract Principle 59

system units, i.e. the aspects. The links between objects and aspects are ex-
pressed by explicit or implicit join points. An aspect weaver is responsible for
merging the objects and the aspects. This can be done statically as a phase at
compile-time or dynamically at run-time [17,15]. For our research, we have used
AspectJ0.4beta7 from Xerox PARC [32,18] for all AOP implementations together
with Java JDK 2.

Although AOP allows to achieve a better separation of concerns, the applica-
tion of aspect-oriented programming bears new challenges. This paper addresses
one of them: aspect composition validation.

Let us assume we have an application and a set of aspects which can be
woven with the objects of the application. This set may contain aspects which
are redundant or even exclusive with respect to other aspects in the set. Al-
ternatively, weaving one aspect may require another aspect to be woven. For
example, if there are two different aspects A1 and A2 containing debugging func-
tionality, they may be mutually exclusive. A1 inserts code into the application
which realises all tracing. Each function call is recorded in a window with graph-
ical support for user control. As opposed to graphical debug support, A2 realises
the same tracing functionality as ASCII output. Since both aspects implement
the same feature (although in different ways) it wouldn’t be reasonable to weave
both aspects. Depending on the context, the environment or the requirements
(e.g. towards efficiency), the one or the other is more suitable.

In [25,28] an example implementation can be found which also reveals this
aspect composition problem.

At this point, assertions [21,26] can be used to achieve correctness. The basic
ideas behind assertions originate in the theory of formal program validation
pioneered by R.W. Floyd [11] C.A.R. Hoare [14] and E.W. Djikstra [9]. The
Hoare triples provide a mathematical notation to express correctness formulae.
Such a correctness formula is an expression of the form:

{P}A{Q} (1)

This means that “any execution of A, starting in a state where P holds, will
terminate in a state where Q holds” [21]. In terms of software, A denotes an
operation or software element whereas P and Q define the assertions, or pre-
and postcondition, respectively. By means of assertions it becomes possible to
state precisely the formal agreement between caller / client and callee / supplier,
i.e. both, what is expected from and what is guaranteed to the other side. This
reflects the “Design by Contract” principle [20].

For our purposes, the validity of a set of aspects which are woven in A reflects
an assertion.

3 Aspect Composition Validation

Since correctness is always relative 1 [21] we assume to have a certain specifi-
cation defining (among other things) which features have to be realised in the
1 This is also expressed by P in equation (1).

www.manaraa.com

60 Herbert Klaeren et al.

application. Therefore, the decision which feature (i.e. here which aspect) should
be inserted (i.e. woven) is not part of our solution. Moreover, the knowledge
whether a set of aspects is valid (in this paper also called valid configuration) or
not, has to be extracted during the analysis phase and captured in the specifi-
cation (e.g. using finite state automata as outlined in [24]) before assertions can
be useful to prove this property.

According to the definition of assertions, we use them to verify that a class or
an application contains a suitable set of aspects which forms a valid configuration
(with respect to what is written in the specification). With these assertions,
the specification is expressed and included in the implementation to assess the
correctness of aspect composition. In this paper, we concentrate on this issue of
software correctness and omit all considerations about other properties which
can be asserted as already known [13].

Expressing the part of the specification concerning the aspect composition
within the code can serve various purposes. These range (similar to other kinds
of assertions) from treating assertions purely as comments with no effect at
run-time to checking the assertions during execution.

Sections 3.1 and 3.2 describe different ways to realise assertions checking for
a valid aspect configuration.

3.1 Precondition, Postcondition, or Invariant

B. Meyer defines an assertion as “an expression involving some entities of the
software, and stating a property that these entities may satisfy at certain stages
of software execution” [21]. In our case, the entities of the software involved are
the classes or methods whereas the stated property is the validity of the aspect
configuration injected into these classes or methods through the aspect weaver.

Three possibilities to assert this property can be identified: preconditions,
postconditions or class invariants [21].

First, this property can be asserted as a precondition. The class or method
starts its work assuming that a valid set of aspects is woven and active. The
precondition checks whether this assumption is true, i.e. whether the contract
is fulfilled by the caller and the property to have a valid aspect configuration in
the callee holds (cf. figure 1 on the left). This may be reasonable if the caller
changes the aspect configuration which is active in the callee (here we assume
that the aspects themselves are not changed, i.e. there is no aspect evolution).
Applying the design by contract principle, the caller ensures that the changed
aspect configuration is valid for the callee. In the precondition the callee checks
whether the caller kept the contract.

Although this is possible, we propose 2 to assert the validity of an active
aspect configuration in postconditions or class invariants. While pre- and post-
conditions describe the properties of individual routines, class invariants allow to
express global properties of the instances of a class which must be preserved by

2 It should be avoided to assert a property multiple times due to the disadvantages of
redundant checks and defensive programming [21].

www.manaraa.com

Aspect Composition Applying the Design by Contract Principle 61

Callee B

PostconditionCo
nt

ra
ct

Caller A

Co
nt

ra
ct

Legend:

request

reply

Class Invariant

Callee B

Precondition

Postcondition

Class Invariant

Set of valid
Aspect Configurations

valid Aspect Configuration

establish Connection
to a valid Aspect
Configuration

Precondition

Caller A

Fig. 1. Different Possibilities to Assert a Valid Aspect Configuration.

all routines. An invariant for a class is a set of assertions (i.e. invariant clauses)
that every instance of this class will satisfy at all times when the state is observ-
able. The crucial point is that with both, postconditions and invariants, it is a
bug in the callee if the assertion is violated [21]. We believe that in most cases
it is more reasonable that the decision about which aspect should be active in a
class C at which times is in the responsibility of C. Thus, in our understanding,
the callee should decide by itself which aspect instances should be connected to
this callee. Consequently, as opposed to a precondition realisation, the callee is
also responsible to ensure and to check that the woven aspects which are ac-
tive in the callee form a valid configuration. Obviously the same argumentation
applies symmetrically to the caller which can also be a callee.

Thus, the remainder of the paper concentrates on postconditions and class
invariants. It goes without saying that the principles shown are also applicable
to preconditions.

3.2 Static or Dynamic

There are two ways to assess software correctness. The property of a class or
method to result in a valid aspect configuration can be ensured at run-time
(dynamically) or alternatively at (or before) weave-time (statically).

A similar distinction can be identified if the times of aspect configuration
changes are considered. Either it is possible to add or remove aspect instances to
or from class instances only statically or even dynamically (cf. table 1; + indicates
that this combination is possible whereas ++ expresses that this combination is
preferable provided there is a choice).

In the following we show the outlined differences between static and dynamic
at some AspectJ0.4beta7 / Java JDK 2 code extracts (cf. figure 2).

In AspectJ0.4beta7, each aspect has (like classes) its name following the
keyword aspect and contains the advised methods with their names and the

www.manaraa.com

62 Herbert Klaeren et al.

Table 1. Static and Dynamic Change and Validation.

Change of Aspect Configuration
static dynamic

Aspect dynamic + +
Composition static ++ usually
Validation not possible

class names referring to these methods. Besides method advising 3, it is also
possible to introduce whole methods.

Dynamic or Static Change of Aspect Configuration
At first, the change of the set of aspects which play an active role in a class in-
stance can be done at weave-time without later changes during execution time.
This situation is depicted in figure 2 on the left. These static connections between
an aspect and all instances of a class are expressed with the keyword static in
AspectJ. Once the weaver injected these static aspects into class StaticExample

at weave-time, the functionality within these aspects will be active in all in-
stances of StaticExample during the whole execution time. The woven aspects
augment the class code of StaticExample which impacts all its instances. More-
over, it is not possible either to add further static aspects nor to remove statically
woven aspects from one or all instances during run-time.

As opposed to statically woven aspects, it is also possible to create new as-
pect instances and connect them to objects during run-time. In figure 2, this
is shown on the right. The code within the light-grey lined rectangle in the
DynamicExample class 4 establishes the connection between aspects and class in-
stance during run-time. The commands used (e.g. addObject(...)) are provided
by AspectJ0.4beta7. If other AOP environments are used, similar language con-
structs are necessary. Alternatively, dynamic weaving capabilities can be used if
available [15].

Dynamic or Static Aspect Composition Validation
Assertions express correctness conditions (here: validity of the aspect configu-
ration). Assertion rules check whether such a condition is violated. These rules
can be executed during run-time. If possible, a violation check can also be done
statically. This requires to have all the necessary information at compile-time or
weave-time which is true for statically woven aspects. During execution the static
aspect configuration does not change. Verifying and removing assertions stati-
cally has the advantage that the overhead of the test during execution is avoided

3 By using the keyword before the aspect weaver injects this advised code at the
beginning of the method. The keyword after augments the method at the end.

4 For demonstration purposes we have chosen to present an aspect-directional design
[16], i.e. the class knows about the aspect but not vice-versa.

www.manaraa.com

Aspect Composition Applying the Design by Contract Principle 63

/**
 * Aspect A1 injects a tracing messages before
 * method doit() of class DynamicExample.
 */
aspect A1 {
 advice void doit() & DynamicExample {
 before {
 System.out.println("DynamicExample.doit(): A1");
 }
 }
}

establish Connection
statically (at Weave-Time)

In
s
ta

n
ti
a
ti
o
n

class MainDynamic {
 public static void main(String[] args) {
 DynamicExample de = new DynamicExample();
 de.doit();
 }
}

class DynamicExample {
 public DynamicExample() {
 A1 a1 = new A1(); A2 a2 = new A2();
 a1.addObject(thisObject);
 a2.addObject(thisObject);
 }
 public void doit() {
 System.out.println("DynamicExample.doit()");
 }
}

In
s
ta

n
tia

tio
n

class MainStatic {
 public static void main(String[] args) {
 StaticExample se = new StaticExample();
 se.doit();
 }
}

/**
 * Aspect StaticAspectTest injects a tracing message
 * before method doit() of class StaticExample.
 */
aspect StaticAspectTest {
 static advice void doit() & StaticExample {
 before {
 System.out.println
 ("StaticExample.doit(): StaticAspectTest");
 }
 }
}

/**
 * Aspect A2 injects a tracing message after
 * method doit() of class DynamicExample.
 */
aspect A2 {
 advice void doit() & DynamicExample {
 after {
 System.out.println("DynamicExample.doit(): A2");
 }
 }
}

class StaticExample {
 public void doit() {
 System.out.println("StaticExample.doit()");
 }
}

instantiate
Aspects and

establish
Connect ion
dynamically

(at Run-Time)

Fig. 2. Example with Statically or Dynamically Connected Aspects.

[13]. Thus, although statically connected aspects can be verified at run-time (in
table 1 depicted with +), assertions execution at compile-time or weave-time is
to prefer (this is expressed by ++ in table 1). Static assertion violation checking
is described in section 5.

Dynamically changing aspect configurations (as depicted on the right in fig-
ure 2) can hardly be checked at compile-time or weave-time. Which aspect in-
stance is created and connected to which class instance depends on the dynamic
control flow and user input. In this case, the dynamically executed assertions
are usually unavoidable. The technique for dynamically asserting aspect config-
urations is described in the next section.

4 Asserting Dynamically Changing Aspect Configurations

In this chapter, we concentrate on all aspect composition validation which cannot
be asserted statically as outlined above. Dynamically created and connected
aspect instances have to be checked during program execution. These assertions
can be added into the corresponding class. Since aspects can be used to separate
assertion functionality from problem domain-related code, it is also possible and
reasonable to extract the aspect configuration assertion code from the class and
localise it into a separate assertion aspect. Thus, if a class wants to test whether
the postcondition (i.e. the property “a valid configuration of active aspects is
connected”) holds, an assertion aspect has to be woven. As the other aspects,

www.manaraa.com

64 Herbert Klaeren et al.

this aspect can be instantiated and connected dynamically or statically. The
implementation of such a static assertion aspect for DynamicExample of figure 2
is outlined in figure 3.

/ *
 * Aspect AspectAssert in jects assert ion functionality after the constructor of
 * DynamicExample. Thus it is asserted that the changed aspect configuration is valid.
 * /
aspect AspectAssertion {
 introduction DynamicExample {
 // -- The facts or knowledge base and the rules --
 priva te stat ic boo lean not(String a) {
 if (a .equa ls("A3")) re tu rn true ; / / not A3
 if (a .equa ls("A4")) re tu rn true ; / / not A4
 re tu rn f a lse ;
 }

 p rivate stat ic boo lean xor(S t ring a , St r ing b) { . . . }

 / / -- Check if any facts and composit ion ru les are vio lated --
 private static boolean check(java.awt.L ist aspect_names) { . .. }

 public boolean assert_composition() {
 // Obtain aspect references of aspects which are active:
 java.ut il.Vector v = th isObject.getAspects();
 // Derive "aspect_names" list with the aspect names from v
 . . .
 boolean b = check(aspect_names);
 re t u rn (b) ;
 }
 }

 // -- Postcondit ion is in jected by augmenting the constructor --
 static advice void new(..) & DynamicExample {
 a f t e r {
 if (assert_composition()) throw new PostCondit ionViolation();
 } catch (Exception e) { System.out.print ln(e.toString()); }
 }
}

Knowledge Base and
Rules defining valid

Aspect Configuration

Assertion

Check active
Configuration

against
Knowledge Base

and Rules

Fig. 3. Assertion Aspect for Dynamic Testing.

Note that with the introduction of these new assertion aspects, these as-
pects themselves may be ensured by higher-level assertion aspects. This situation
can be compared to the abstraction hierarchy in object-orientation (“instance”,
“class” and “meta-class”). The crucial question is how many abstraction levels
are reasonable. These considerations are beyond the scope of this paper [31].

According to figure 3, the knowledge base and rules part expresses the knowl-
edge contained in the specification. It defines all valid aspect configurations. The
actual configuration is determined with the AspectJ command
thisObject.getAspects() during run-time which returns all active aspect in-
stances connected to the class instance. Such a possibility to determine all woven
and active aspect instances at run-time is crucial to their dynamic assertion. This
determined set of active aspect instances is then checked against the knowledge
base and rules. If this check proves that the postcondition is true, an invalid
aspect configuration is detected and an exception is raised (cf. figure 3).

An interesting part is the one expressing the knowledge base and the rules
of a valid aspect configuration. Some basic types of rules can be identified which
allow to express the relevant dependencies between the aspects and between the
aspects and a certain class instance (with respect to the specification). For our
various example implementations the following rules proved to be sufficient:

www.manaraa.com

Aspect Composition Applying the Design by Contract Principle 65

– not A1: A not-clause expresses that the aspect with name A1 is not allowed
to be woven into the class instance.

– requires A1: Note that this term differs from require clauses sometimes used
to express assertions (e.g. in the programming language Eiffel [19]). Here,
it is meant that weaving aspect A1 into the class instance is mandatory.
This rule may also have multiple arguments (e.g. requires A1 A2 A3) which
indicates that at least one of these aspects is mandatory (in the example
either A1 or A2 or A3 is mandatory).

– xor A1 A2: This expression indicates that either A1 or A2 may be woven into
a class instance but never both of them.

– and A1 A2: An and-clause expresses that A1 and A2 have to be woven together
into the same class instance.

In figure 3 the methods not and xor outline a possible implementation of
two types of rules in AspectJ0.4beta7 / Java JDK 2. The check(...) method
describes the application of these rules to a set of aspects.

Although these dependency rules are expressed in AspectJ0.4beta7 / Java
syntax in the presented implementation a multi-paradigm approach [6,5] would
be suitable here. With a logic programming language (e.g. Prolog) the imple-
mentation of the knowledge or dependency rules contained in the specification
would lead to improved understandability. Generally speaking, a domain-specific
language [7] based on the predicate calculus would improve the implementation.
Alternatively, a domain-specific language based on finite state automata can be
used to express these dependencies as described in [24].

An assertion aspect for a certain software system may be also generated from
a file containing the knowledge base and rules [28].

5 Asserting Static Aspect Configurations

While the validation of the dynamic aspects results in performance penalties,
these can be avoided for static aspects since the configuration can be assured
before the execution (cf. table 1). It is a common technique to remove assertions
at compile-time provided they can be checked in a static analysis [13].

The principle of such static validation procedure is as follows: Assuming we
have a class implementation including static assertion clauses to assure a valid
aspect configuration. Then, the compiler, weaver or any tool operating before
execution time can examine this class implementation. The statically known
information about what has to be asserted can be extracted from the code and
checked before run-time. The dynamic tests during execution can be avoided
since the already statically checked assertions can be eliminated.

Based on this observation, we built the “Aspect Composition Validation”
tool (cf. figure 4) in order to automate the static verification. The tool realises
a slightly different verification procedure compared to the principle described
above. We chose not to inject assertion code into the classes. This eliminates
the need to remove this code before execution. The developer decides by menu
which classes the tool has to assert. The assertion itself (i.e. the property that is

www.manaraa.com

66 Herbert Klaeren et al.

Fig. 4. Aspect Composition Validation Tool.

to be asserted) is obvious: the aspects connected to the class have to be checked
according to aspect dependency rules derived from the specification.

The tool can be used to ensure the property of a valid static aspect config-
uration within a specific class. Such a class-wide validation corresponds to the
concept of class invariants described in [21]. Moreover, the tool is also able to
verify the aspect configuration of a set of classes. Such a set may be a pack-
age, a component or a subsystem. Therefore, this is an extension of B. Meyer’s
understanding of assertions (which is limited to pre-, postconditions and class
invariants) to more than a single class, i.e. to more coarse-grained building blocks
of the system. In the tool, the single file or the set of files containing the class(es)
to be validated are listed in the chosen Files list with their aspects displayed in
the field Aspect List as shown in figure 4. Additionally, the highlighted file in
the file list is presented in the Aspect File text area.

The tool verifies the aspect configuration (consisting of all the aspects which
are included in the listed files on the left) according to the aspect dependency
rules (initiated by pressing the validate button). Violated aspect dependency
rules are displayed in the list named violated Dependency Rules. The aspect
dependency rules expressing the invariants of aspect combination are the same as
those described in section 4 (not, requires, and and xor). The software developer
can insert or change these aspect rules directly in the Aspect Rules text area.

www.manaraa.com

Aspect Composition Applying the Design by Contract Principle 67

Alternatively, they can be read from a user-defined file containing these rules
written in the domain-specific language.

The Aspect Composition Validation tool extracts the static aspects by pars-
ing the files containing the already woven source. AspectJ0.4beta7 marks all
woven code sections with comments. Alternatively, the woven aspects could be
derived from specific documentation files (with extension .corr) provided by
AspectJ0.4beta7. This file documents which aspect is woven in which class or
method. The woven aspect set could also be obtained from the original source
files directly.

6 Conclusion

Although aspect-oriented programming can improve software due to a better
separation of concerns, the software developer is faced with new challenges. One
of them is the aspect composition validation which is not yet examined suffi-
ciently in AOP and therefore is addressed in this paper.

Both the dependencies between the aspects woven with a class instance and
the dependencies between these woven aspects and the class instance itself have
to be identified in a specification. On this basis we demonstrate how to use
assertions to ensure the correctness of these dependencies with respect to the
specification. Faulty aspect configurations (e.g. if the set of woven aspects em-
braces aspects which are contradictory) can be detected using assertions similar
to other bugs. Dynamically changing aspect configurations are checked at run-
time. Due to the performance penalty in case of dynamic tests, we also presented
a static analysis which is preferable in case of static aspect configurations. Al-
though the feasibility of the principles and concepts in this paper is shown with
AspectJ0.4beta7 and Java JDK 2 implementations the approach is indepen-
dent of the concrete technology. For instance, using composition filters [2], [1] to
achieve a better separation of concerns also leads to the problem that both the
order of the filters and the filters of the different objects within one application
have to fit semantically. Assertions can be used similarly in this case.

Our further research will concentrate on transferring these concepts to com-
ponent or object composition validation with respect to already existing support
in this domain [3]. There is a growing need for computer support in the field of
composing systems of reusable parts which are stored in repositories. As with
aspects, there might be multifarious dependencies between these parts. Another
field is the graphical representation of the dependencies and of all violated de-
pendency rules within a certain application. Besides this graphical feature, a
tool environment can include further support for the software developer. The
description of a valid configuration, i.e. of the knowledge base and the rules ac-
cording to the specification, should be separated. Further investigation in the
sense of domain engineering is necessary there. Moreover, a partial automatic
generation of assertion aspects from such separated descriptions is possible and
will be another research activity in our future work.

www.manaraa.com

68 Herbert Klaeren et al.

References

1. M. Aksit. Composition and Separation of Concerns in the Object-Oriented Model.
ACM Computing Surveys, 28(4), December 1996.

2. M. Aksit and B. Tekinerdogan. Aspect-Oriented Programming Using Composition
Filters. In ECOOP 1998 Workshop Reader, page 435, Springer-Verlag, 1998.

3. D. Batory and B.J. Geraci. Composition Validation and Subjectivity in GenVoca
Generators. In IEEE Transactions on Software Engineering, pages 67–82, 1997.

4. G. Booch. Object-Oriented Analysis and Design. Benjamin/Cummings, Redwood
City, CA, second edition, 1994.

5. J.O. Coplien. Multi-Paradigm Design. In A. Speck and E. Pul-
vermüller, editors, Collection of Abstracts of the GCSE’99 YRW,
http://www-pu.informatik.uni-tuebingen.de/users/speck/GCSE99_Young

Research/abstracts/Jim Coplien gcseYR99.html, September 1999.
6. J.O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.
7. K. Czarnecki. Generative Programming, Principles and Techniques of Software

Engineering Based on Automated Configuration and Fragment-Based Component
Models. PhD thesis, Technical University of Ilmenau, Ilmenau, Germany, 1999.

8. K. Czarnecki and U.W. Eisenecker. Synthesizing Objects. In Proceedings of
ECOOP’99, Lecture Notes in Computer Science LNCS 1628, pages 18–42. Springer-
Verlag, June 1999.

9. E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
10. U.W. Eisenecker. Generative Programming GP with C++. In H.-P. Mössenböck,

editor, Proceedings of Joint Modular Programming Languages Conference, LNCS
1204. Springer-Verlag, 1997.

11. R.W. Floyd. Assigning Meanings to Programs. In J.T. Schwartz, editor, Proc.
Am. Math. Soc. Symp. in Applied Math., volume 19, pages 19–31, Providence,
R.i., 1967. American Mathematical Society.

12. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Abstractions
and Reuse of Object-Oriented Software. Addison-Wesley, Reading, MA, 1994.

13. J. Gough and H. Klaeren. Executable Assertions and Separate Compilation. In
H.-P. Mössenböck, editor, Proceedings Joint Modular Languages Conference, LNCS
1204, pages 41–52. Springer-Verlag, 1997.

14. C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications
of the ACM, 12(10):576–583, October 1969.

15. P. Kenens, S. Michiels, F. Matthijs, B. Robben, E. Truyen, B. Vanhaute,
W. Joosen, and P. Verbaeten. An AOP Case with Static and Dynamic Aspects. In
Proceedings of the Aspect-Oriented Programming Workshop at ECOOP98, 1998.

16. M. A. Kersten and G. C. Murphy. Atlas: A Case Study in Building a Web-based
Learning Environment using Aspect-oriented Programming. OOPSLA, 1999.

17. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In Lecture Notes in Computer Science
LNCS 1241, ECOOP. Springer-Verlag, June 1997.

18. C. V. Lopes and G. Kiczales. Recent Developments in AspectJ. In Proceedings of
the Aspect-Oriented Programming Workshop at ECOOP98, 1998.

19. B. Meyer. Eiffel: The Language. Prentice Hall, Englewood Cliffs, 1991.
20. B. Meyer. Applying “Design by Contract”. IEEE Computer, 25(10):40–51, October

1992.
21. B. Meyer. Object-Oriented Software Construction. Prentice Hall PTR, Upper

Saddle River, NJ, second edition, 1997.

www.manaraa.com

Aspect Composition Applying the Design by Contract Principle 69

22. Object Management Group. The Common Object Request Broker: Architecture
and Specification, February 1998.

23. D. L. Parnas. On The Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053–1058, December 1972.

24. L. Pazzi. Explicit Aspect Composition by Part-Whole Statecharts. In Proceedings
of the Aspect-Oriented Programming Workshop at ECOOP’99, 1999.

25. E. Pulvermüller, H. Klaeren, and A. Speck. Aspects in Distributed Environments.
In Proceedings of the International Symposium on Generative and Component-
Based Software Engineering GCSE’99, Erfurt, Germany, September 1999.

26. D.S. Rosenblum. A Practical Approach to Programming With Assertions. IEEE
Transaction on Software Engineering, 21(1):19 –31, January 1995.

27. Y. Smaragdakis and D. Batory. Implementing Layered Designs with Mixin Layers.
In Lecture Notes in Computer Science LNCS 1445, pages 550–570, 1998.

28. A. Speck, E. Pulvermüller, and M. Mezini. Reusability of Concerns. In C. V.
Lopes, L. Bergmans, M. DHondt, and P. Tarr, editors, Proceedings of the Aspects
and Dimensions of Concerns Workshop, ECOOP2000, Sophia Antipolis, France,
June 2000.

29. C. Szyperski. Component Software. Addison-Wesley, ACM-Press, New York, 1997.
30. P. Wegner. The Object-Oriented Classification Paradigm. In P. Wegner and

B. Shriver, editors, Research Directions in Object-Oriented Programming, pages
479–560. MIT Press, 1987.

31. J.F.H. Winkler and S. Kauer. Proving Assertions is also Useful. SIGPLAN Notices,
32(3):38–41, 1997.

32. XEROX Palo Alto Research Center, http://aspectj.org. Homepage of AspectJ,
2000.

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

Grammars
�

as Contracts

Merijn de Jonge and Joost Visser

CWI,
�

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands�
Merijn.de.Jonge,Joost.Visser � @cwi.nl

Abstract. Component-based
�

development of language tools stands in need of
meta-tool support. This support can be offered by generation of code – libraries
or full-fledged components – from syntax definitions. We develop a comprehen-
sive architecture for such syntax-driven meta-tooling in which grammars serve
as contracts between components. This architecture addresses exchange and pro-
cessing both of full parse trees and of abstract syntax trees, and it caters for the
integration of generated parse and pretty-print components with tree processing
components.
We discuss an instantiation of the architecture for the syntax definition formal-
ism SD

�
F, integrating both existing and newly developed meta-tools that support

S
�

D
�

F. The ATerm format is adopted as exchange format. This instantiation gives
special attention to adaptability, scalability, reusability, and maintainability issues
surrounding language tool development.

1 Introduction

A
�

need exists for meta-tools supporting component-based construction of language
tools.
�

Language-oriented software engineering areas such as development of domain-
specific	 languages (DSLs), language engineering, and automatic software renovation
(ASR)

pose challenges to tool-developers with respect to adaptability, scalability, and
maintainability� of the tool development process. These challenges call for methods and
tools
�

that facilitate reuse. One such method is component-based construction of lan-
guage� tools, and this method needs to be supported by appropriate meta-tooling to be
viable.

Component-based
�

construction of language tools can be supported by meta-tools
that
�

generate code – subroutine libraries or full-fledged components – from syntax def-
initions. Figure 1 shows a global architecture for such meta-tooling. The bold arrows
depict
�

meta-tools, and the grey ellipses depict generated code. From a syntax definition,
a� parse component and a pretty-print component are generated that take input terms into
trees
�

and vice versa. From the same syntax definition a library is generated for each sup-
ported� programming language, which is imported by components that operate on these
trees.
�

One such component is depicted at the bottom of the picture (more would clutter
the
�

picture). Several of these components, possibly developed in different programming
languages
�

can interoperate seamlessly, since the imported exchange code is generated
from
�

the same syntax definition.
In
�

this paper we will refine the global architecture of Figure 1 into a comprehen-
si	 ve architecture for syntax-driven meta-tooling. This architecture embodies the idea

G. Butler and S. Jarzabek (Eds.): GCSE 2000, LNCS 2177, pp. 85-99, 2001.
�� Springer-Verlag Berlin Heidelberg 2001

www.manaraa.com

Component

Library

TreeTree

Pretty PrinterParser

Input
Term
� Output

�Syntax
�

Definition Term

Fig
�

. 1. Architecture
�

for meta-tool support for component based language tool develop-
ment.� Bold arrows are meta-tools. Grey ellipses are generated code.

that
�

grammars can serve as contracts governing all exchange of syntax trees between
components� and that representation and exchange of these trees should be supported by
a	 common exchange format. An instantiation of this architecture is available as part of
the
�

Transformation Tools package XT.
The paper is structured as follows. In Sections 2, 3, and 4 we will develop sev-

eral
 perspectives on the architecture. For each perspective we will make an inventory
of� meta-languages and meta-tools and formulate requirements on these languages and
tools.
�

We will discuss how we instantiated this architecture: by adopting or developing
specific� languages and tools meeting these requirements. In Section 5 we will combine
the
�

various perspectives thus developed into a comprehensive architecture. Applications
of� the presented meta-tooling will be described in Section 6. Sections 7, and 8 contain
a	 discussion of related work and a summary of our contributions.

2

Concrete syntax� definition and meta-tooling�

One
�

aspect of meta-tooling for component based language tool development concerns
the
�

generation of code from concr� ete syntax� definitions (grammars). Figure 2 shows the
basic
�

architecture of such tooling. Given a concrete syntax definition, parse and pretty-
print� components are generated by a parser generator and a pretty-printer generator,
respectively. Furthermore, library code is generated, which is imported by tool com-
ponents� (Figure 2 shows no more than a single component to prevent clutter). These
components� use the generated library code to represent parse trees (i.e. concr� ete syntax�

trees),
�

read, process, and write them. Thus, the grammar serves as an interface descrip-
tion
�

for these components, since it describes the form of the trees that are exchanged.
A
�

key feature of this approach is that meta-tools such as pretty-printer and parser
generators� are assumed to operate on the same input grammar. The reason for this is
that
�

having multiple grammars for these purposes introduces enormous maintenance
costs� in application areas with large, rapidly changing grammars. A grammar serving

86 Merijn de Jonge and Joost Visser

www.manaraa.com

Input
Term
� Output

�

Term

Pretty PrinterParser

Component
�

Library

ParsetreeParsetree

Definition
� Syntax

�Concrete

Fig
�

.� 2.
�

Architecture
	

for

concr� ete� syntax
 meta-tools.� The
�

concrete� syntax� definition
�

serv� es� as� contract� between
�

components.� Components
�

that
�

import
�

generated� library
�

code�

interoperate with� each� other� and� with� generated� parsers� and� pretty-printers� by
�

e� xchang-
ing parse� trees

�
adhering� to

�
the
�

contractual� grammar� .

as� interface� definition
�

enables� smooth� interoperation between
�

parse� components,� pretty-�

print� components� and� tree
�

processing� components.� In fact,� we� w� ant� grammars� to
�

serv� e�

as� contracts� go� v� erning� all� e� xchange of� trees
�

between
�

components,� and� having� se� v� eral�

contracts� specifying� the
�

same� agreement� is a� recipe for disagreement.
�

Note
�

that
�

our� architecture� de
�

viates� from

e� xisting meta-tools� in
�

the
�

respect! that
�

we�

assume� full

parse� trees
�

can� be
�

produced� by
�

parsers� and� consumed� by
�

pretty-printers,�

not" just
#

abstract� syntax� trees
�

(ASTs).
$

These
�

parse� trees
�

contain� not� only� semantically�

rele� v	 ant
 information,
�

as
 do
�

ASTs,

b
�
ut� the

�
y� additionally
 contain� nodes� representing� liter

�
-

als,
 layout,
�

and
 comments.� The
�

reason� for
�

allo
 wing� such� concrete� syntax� information
�

in
�

trees
�

is
�

that
�

man� y� applications,
 e.g.� softw� are
 reno� v	 ation,
 require� preserv� ation
 of� layout
�

and
 comments� during
�

tree
�

transformation.
�

2.1
�

Concr
�

ete� syntax� definition
�

In order� to
�

satisfy� our� adaptability
 ,� scalability� and
 maintainability demands,
�

the
�

concrete�

syntax� definition
�

formalism
�

must� satisfy� a
 number� of� criteria.� The
�

syntax� definition
�

formalism must hav	 e� po� werful� support� for modularity and
 reuse. It must be
�

possible� to
�

e� xtend languages without� changing� the
�

grammar� for the
�

base
�

language. This is essential,�

because
�

each� change� to
�

a
 grammar� on� which� tooling
�

is based
�

potentially� leads to
�

a

modification a
 v	 alanche.
 Also, the
�

grammar� language must be
�

purely� declarati
�

v	 e.� If not,
its reusability for dif

�
ferent purposes� is compromised.�

In
�

our� instantiation
�

of� the
�

meta-tool� architecture,
 the
�

central� role� of� concrete� syntax�

definition
�

language
�

is
�

fulfilled
�

by
�

the
�

Syntax
�

Definition
�

F

ormalism� S
�

D
!

F
" [11].

#
Figure

3

$

sho� ws� an
 e� xample% of� an
 S
�

D
!

F
" grammar� . This

�
e� xample% definition

�
contains� le

�
xical% and

conte� xt-free% syntax� definitions
�

distrib
�

uted� o� v	 er� a
 number� of� modules.� Note
&

that
�

the
�

ori-�

entation� of� productions� is
�

flipped
'

with� respect� to
�

BNF
(

notation.�

87Grammers as Contracts

www.manaraa.com

definition
module Exp
exports

context-free� syntax
Identifier � Exp � cons� (v

�
ar)� �

Identifier “(” � Exp “,” 	 * “)”
 Exp � cons� (fcall)
� �

“(” Exp “)”
 Exp
� �

bracket �
module Let

�
exports

context-free� syntax
let Defs in Exp � Exp � cons(let) �
Exp where Defs � Exp

� �
cons(where) �

module Def
�

exports
aliases�

(
�

Identifier “=” Exp)
�

“,” � + � Defs

module� Main
�

imports Exp Let Def

exports�
sorts Exp
lexical syntax�

[! t
" #

n]
$ %

LAYOUT
&

context-free restrictions�
LAY

'
OUT?
&

-/- [() t
" *

n]
$

Fig
+

., 3.
-

An
.

e/ xample0 S
1

D
2

F
3 grammar4 .

S
1

DF of5 fers po6 werful7 modularization features. Notably
8

,9 it allo: ws7 modules to
;

be
<

mu-
tually
;

dependent,
=

and: it
>

allo: ws7 alternati: v? es/ of5 the
;

same@ non-terminalA to
;

be
<

spread@ across:
multipleB modules.B F

C
or5 instance,

>
the
;

syntax@ of5 a: k
D

ernel/ language
E

and: the
;

syntax@ es/ of5 its
>

e/ xtensions0 canF be
<

defined
=

in
>

separate@ modules.B Also,
.

mutuallyB dependent
=

non-terminalsA
canF be

<
defined

=
in

>
separate@ modules.B Renamings

G
and: parameterized6 modulesB further

H
f
H
a-:

cilitateF syntax@ reuse.I
S

1
D

2
F

3 is
>

a: highly
J

e/ xpressi0 v? e/ syntax@ definition
=

formalism.
H

Apart
.

from
H

symbol@ itera-
>

tion
;

constructors,F with7 or5 without7 separators,@ it
>

pro6 vides? notationA for
H

optional5 symbols,@
sequences@ of5 symbols,@ optional5 symbols,@ and: more.B These

K
notationsA for

H
b
<
uildingL com-F

pound6 symbols@ canF be
<

arbitrarily: nested.A S
1

D
2

F
3 is

>
notA limited

E
to

;
a: subclass@ of5 conteF xt-free0

grammars,4 such@ as: LR or5 LL grammars.4 Since
1

the
;

full classF of5 conteF xt-free syntax@ es,/ as:
opposed5 to

;
an: yM of5 its proper6 subclasses,@ is closedF underL compositionF (combining

N
tw
;

o5
conteF xt-free grammars4 will7 al: w7 ays: produce6 a: grammar4 that

;
is conteF xt-free as: well),7 this

;
absence: of5 restrictions is essential/ to

;
obtain5 true

;
modular syntax@ definition,

=
and: “as-is”

syntax@ reuse.
S

1
DF of5 fers disambiguation

=
constructs,F such@ as: associati: vity? annotations: and: rela-

ti
;

v? e/ production6 priorities,6 that
;

are: decoupled
=

from constructsF for syntax@ definition
=

it-
self.@ As a: result, disambiguation

=
and: syntax@ definition

=
are: not tangled

;
in grammars.4

This is beneficial
<

for syntax@ definition
=

reuse. Also, S
1

DF grammars4 are: purely6 declara-
=

ti
;

v? e,/ ensuring/ their
;

reusabilityI for
H

other5 purposes6 besides
<

parsing6 (e.g.
N

codeF generation,4
pretty-printing).6

S
1

D
2

F
3 of5 fers

H
the
;

ability: to
;

controlF the
;

shape@ of5 parse6 trees.
;

The
K

alias: constructF (see
N

moduleB Def
O

in
>

Figure
C

3
P

)
Q

allo: ws7 auxiliary: namesA for
H

compleF x0 sorts@ to
;

be
<

introduced
>

without7 af: fecting
H

the
;

shape@ of5 parse6 trees
;

or5 abstract: syntax@ trees.
;

Aliases
.

are: resolvI ed/
by
<

a: normalizationA phase6 during
=

parser6 generation,4 and: the
;

yM do
=

notA introduce
>

auxiliary:
nodes.A

88 Merijn de Jonge and Joost Visser

www.manaraa.com

2.2
�

Concr
�

ete� meta-tooling�

P
�

ar� sing� S
�

D
	

F

 is

�
supported� by

g� ener� alized� LR

�
parser� generation� [15].

�
In

�
contrast� to

�

plain� LR
�

parsing,� generalized� LR
�

parsing� is
�

able� to
�

deal
�

with� (local)
	

ambiguities� and�

thereby
�

remo
 v� es� an� y
 restrictions
 on� the
�

conte� xt-free� grammars.� A
�

detailed
�

ar� gument�

that
�

e� xplains how� the
�

properties� of� GLR
�

parsing� contrib� ute� to
�

meeting the
�

scalability�

and� maintainability demands
�

of� language-centered application� areas� can� be
�

found in [7
�

].
�

The meta-tooling used� for parsing� in our� architecture� consist� of� a� parse� table
�

generator� ,�
and� a� generic� parse� component,� called� sglr ,� which� parses� terms

�
using� these

�
tables,

�

and� generates� parse� trees
�

[16].
�

Par� se� tr
�

ee� repr� esentation� In our� architecture� instantiation, the
�

parse� trees
�

produced�

from generated� parsers� are� represented in the
�

S
�

DF parse� tree
�

format, called� AsFix [16].
�

AsFix trees
�

contain� all� information about� the
�

parsed� term,
�

including layout and� com-�

ments. As a� consequence,� the
�

e� xact input term
�

can� al� w� ays� be
�

reconstructed, and� during
�

tree
�

processing� layout and� comments� can� be
�

preserv� ed.� This is essential� in the
�

applica-�

tion
�

area� of� softw� are� renov� ation.�

Full AsFix trees
�

rapidly gro� w� large� and� become
�

inefficient to
�

represent and� e� x-
change.� It

�
is
�

therefore
�

of� vital� importance
�

to
�

ha
�

v� e� an� ef� ficient

representation
 for
!

AsFix
�

trees
�

a� v� ailable.� Moreo
"

v� er� ,� component� based
�

softw� are� de
�

v� elopment� requires
 a� uniform�

e� xchange� format
!

to
�

share� data
�

(including
	

parse� trees)
�

between
�

components.� The
#

A
�

T
#

erm�

format
!

is
�

a� term
�

representation
 suitable� as� e� xchange� format
!

for
!

which� an� ef� ficient

repre-

sentation� e� xists.� Therefore
#

AsFix
�

trees
�

are� encoded� as� A
�

T
#

erms� to
�

obtain� space� ef� ficient

e� xchangeable� parse� trees
�

([
	

5
$
]
�

reports
 compression� rates
 of� o� v� er� 90
%

percent).� In
�

Sec-
�

tion
�

3.2
&

we� will� discuss
�

tree
�

representation
 using� A
�

T
#

erms� in
�

more' detail.
�

Pr
(

etty-printing� W
)

e� use�
GP

*
P

* ,� a� generic� pretty-printing� toolset
�

that
�

has
�

been
�

defined
�

in
�

[13].
�

This
#

set� of� meta-tools' pro� vides� the
�

generation� of� customizable� pretty-printers� for
!

arbitrary� languages
+

defined
�

in
�

S
�

D
,

F
- . The

#
layout
+

of� a� language
+

is
�

e� xpressed� in
�

terms
�

of�

pretty-print� rules
 which� are� defined
�

in
�

an� ordered� sequence� of� pretty-print� tables.
�

The
#

ordering� of� tables
�

allo� ws� customization� by
�

o� v� erruling� e� xisting� formatting
!

rules.

The
#

standard� distrib
�

ution� of�
GP

*
P

* contains� a� formatter
!

which� operates� on� AsFix
�

parse�

trees
�

and� supports� comment� preserv� ation.� An additional� formatter which� operates� on�

ASTs is distrib
�

uted� as� part� of� XT.
Since
�

GPP is an� open� system� which� can� be
�

e� xtended and� adapted� easily� ,� support� for
new� output� formats (in

	
addition� to

�
plain� te

�
xt, LA

.
TEX, and� HTML which� are� supported�

by
�

def
�

ault)� and� language specific� formatters can� be
�

incorporated with� little ef� fort.

3
/

Abstract
0

syntax definition and meta-tooling1

A second� aspect� of� meta-tooling for component� based
�

language tool
�

de
�

v� elopment� con-�

cerns� the
�

generation� of� code� from
!

abstr� act� syntax� definitions.
�

Figure
2

4
3

sho� ws� the
�

archi-�

tecture
�

of� such� tooling.
�

Gi
�

v� en� an� abstract� syntax� definition,
�

library
+

code� is
�

generated,�

which� is
�

used� to
�

represent
 and� manipulate' ASTs.
�

The
#

abstract� syntax� definition
�

lan-
+

guage� serv� es� as� an� interf
�

ace� description
�

language
+

for
!

AST
�

components.� In
�

other� w� ords,�

abstract� syntax� definitions
�

serv� e� as� tree
�

type
�

definitions
�

(analogous
	

to
�

XML
4

’s� document
�

type
�

definitions).
�

89Grammers as Contracts

www.manaraa.com

Component
�

Library

AST
�

AST
�

Definition
Syntax
�Abstract

�

Fig.� 4. Architecture for abstr� act� syntax� meta-tools. The abstract� syntax� definition,
	

pre-

scribing� tree
�

structure,� serv� es� as� a� contract
 between
�

tree
�

processing
 components.

3.1
�

Abstract syntax� definition
�

For� the
�

specification� of� abstract� syntax� we� hav� e� defined
	

a� subset� of� S
�

DF,� which� we� call

AbstractS
�

DF. AbstractS
�

DF w� as� obtained� from S
�

DF simply� by
�

omitting� all� constructs

specific� to
�

the
�

definition
	

of� concr� ete� syntax.� Thus, AbstractS
�

DF allo� ws� only� productions

specifying� prefix
 syntax,� and� it contains
 no disambiguation
	

constructs
 or� constructs

for specifying� lexical syntax.� AbstractS
�

DF inherits the
�

po
 werful� modularity features of�

S
�

DF,� as� well� as� the
�

high e� xpressiv� eness� concerning
 arbitrarily� nested compound
 sorts.�

Figure
�

5
�

sho� ws� an� e� xample� of� an� Abstract
�

S
�

D
�

F
� definition.

	

The
�

need to
�

define
	

separate� concrete
 syntax� and� abstract� syntax� definitions
	

w� ould�

cause
 a� maintenance! problem.
 Therefore,
�

the
�

concrete
 syntax� definition
	

can
 be
�

an-�

notated with� abstract� syntax� directi
	

v� es� from which� an� AbstractS
�

DF definition
	

can
 be
�

generated" (see
#

Section
�

3.3
$

belo
�

w).� These abstract� syntax� directi
	

v� es� consist
 of� optional�

constructor
 annotations� for conte
 xt-free productions
 (the
#

“cons” attrib� utes% in Figure 3
$
)
&

which� specify� the
�

names of� the
�

corresponding
 abstract� syntax� productions.

3.2
�

Abstract
'

syntax� tr
(

ee) r* epr) esentation)

In order� to
�

meet our� scalability� demands,
	

we� will� require a� tree
�

representation format
that
�

pro
 vides� the
�

possibility
 of� ef� ficient
+

storage� and� e� xchange.� Ho
,

we� v� er� ,� we� do
	

not w� ant�

a� tree
�

format
-

that
�

has
.

an� ef� ficient
+

binary
�

instantiation
/

only� ,� since� this
�

mak! es� all� tooling
�

necessarily dependent
	

on� routines0 for
-

binary
�

encoding.� Ha
,

ving� a� human
.

readable0 in-
/

stantiation� k
1

eeps� the
�

system� open� to
�

the
�

accommodation� of� components
 for
-

which� such�

routines0 are� not (yet)
#

a� v� ailable.� Finally
�

,� we� w� ant� the
�

typing
�

of� trees
�

to
�

be
�

optional2 ,�
in
/

order� not to
�

preempt
 inte
/

gration" with� typeless,
�

generic" components.
 F
�

or� instance,
/

a�

generic" tree
�

vie� wer� should� be
�

able� to
�

read0 the
�

intermediate
/

trees
�

without� e� xplicit� kno
1

wl-�

edge� of� their
�

types.
�

ASTs
�

are� therefore
�

represented0 in
/

the
�

A
�

T
�

erm� format,
-

which� is
/

a� generic" format
-

for
-

representing0 annotated� trees.
�

In
3

[5
�

]
4

a� 2-le
5

v� el� API
�

is
/

defined
	

for
-

A
�

T
�

erms.� This
�

API
�

hides
.

a� space� ef� ficient
+

binary
�

representation0 of� A
�

T
�

erms� (B
#

AF)
�

behind
�

interf
/

ace� func-
-

tions
�

for
-

b
�
uilding,% tra

�
v� ersing� and� inspecting

/
A
�

T
�

erms.� The
�

binary
�

representation0 format
-

is
/

based
�

on� maximal! subtree� sharing.� Apart
�

from
-

the
�

binary
�

representation,0 a� plain,

human-readable
.

representation0 is
/

a� v� ailable.�

90 Merijn de Jonge and Joost Visser

www.manaraa.com

definition
module Exp
exports

syntax
“var”� (Identifier) � Exp
“fcall” (

�
Identifier, Exp*) � Exp

module Let
exports

syntax
“let” (Defs, Exp)

� �
Exp

“where” (
�

Exp, Defs) � Exp

module� Def
	

exports

aliases�

(
�

Identifier
�

Exp)+
 Defs
�

module� Main
�

imports Exp Let Def

Fig
�

.� 5.
�

Generated
�

Abstract
�

S
�

D
�

F
� definition.

�

AbstractS
�

DF definitions
�

can� be
�

used� as� type
�

definitions
�

for ATerms	 by
�

language tool
�

components.� In particular
 ,� the
�

AbstractS
�

DF definition
�

of� the
�

parse
 tree
�

formalism AsFix
serv
 es	 as� a� type

�
definition
�

for parse
 trees
�

(See
�

Section
�

2).
�

The AbstractS
�

DF definition
�

of� Figure 5
�

defines
�

the
�

type
�

of� ASTs representing e	 xpressions. Thus, the
�

ATerm	 format
pro
 vides� a� generic� (type-less)

�
tree

�
format, on� which� AbstractS

�
DF pro
 vides� a� typed

�
vie� w� .

3.3
�

Abstract
�

fr
�

om� concr� ete� syntax�

The connection� between
�

the
�

abstract� syntax
 meta-tooling and� the
�

concrete� syntax
 meta-
tooling
�

can� be
�

pro
 vided� by
�

three
�

meta-tools, which� are� depicted
�

in Figure 6
�

. Central
�

in
�

this
�

picture
 is
�

a� meta-tool� that
�

deri
�

v� es	 an� abstract� syntax
 definition
�

from
�

a� concrete�

syntax
 definition.
�

The

tw
�

o� accompan� ying! meta-tools� generate� tools
�

for
�

con� v� erting	 full
�

parse
 trees
�

into
�

ASTs
"

and� vice� v� ersa.	 Evidently
#

,� these
�

ASTs
"

should
 correspond� to
�

the
�

abstract� syntax
 definition
�

which� has
$

been
�

generated� from
�

the
�

concrete� syntax
 definition
�

to
�

which� the
�

parse
 trees
�

correspond.�

An
"

abstract� syntax
 definition
�

is
�

obtained� from
�

a� grammar� in
�

tw
�

o� steps.
 Firstly
%

,� con-�

crete� syntax
 productions
 are� optionally� annotated� with� prefix
 constructor� names.& T

o�

deri
�

v� e	 these
�

constructor� names& automatically� ,� the
�

meta-tool� sdfcons has
$

been
�

im-
�

plemented.
 This tool
�

basically
�

collects� ke	 yw! ords� and� non-terminal names from pro-

ductions
�

and� applies� some
 heuristics to
�

synthesize
 nice names from these.
�

Non-unique
'

constructors� are� made unique� by
�

adding� primes
 or� qualifying(with� non-terminal names.
By manually supplying
 some
 seed
 constructor� names, users� can� steer
 the

�
operation� of�

sdfcons,� which� is useful� for languages which� sparsely
 contain� ke	 yw! ords.�

Secondly
�

,� the
�

annotated� grammar� is fed into the
�

meta-tool sdf2asdf,� yielding!

an� AbstractS
�

DF definition.
�

For� instance, the
�

AbstractS
�

DF definition
�

in Figure 5
�

w� as�

obtained� from the
�

S
�

DF definition
�

in Figure 3
)

. This transformation
�

basically
�

thro
�

ws� out�

literals,
*

and� replaces+ mixfix� productions
 by
�

prefix
 productions,
 using� the
�

associated�

constructor� name.&

T

ogether� with� the
�

abstract� syntax
 definition,
�

the
�

con� v� erters	 parsetree2ast, and�

ast2parsetree which� translate
�

between
�

parse
 trees
�

and� ASTs
"

are� generated.� Note
'

that
�

the
�

first
-

con� v� erter	 remo+ v� es	 layout
*

and� comment� information,
�

while� the
�

second
 in-
�

serts
 empty. layout
*

and� comments.�

91Grammers as Contracts

www.manaraa.com

Definition
Syntax
�Concrete

Parsetree
�

Parsetree

AST
�

AST

ast2parsetree�
Definition

Syntax
�Abstract

parsetree2ast

Fig
�

.� 6.
�

Architecture
�

for
	

meta-tools
 linking
�

abstract� to

concrete� syntax.� The
�

abstract� syn-�

tax

definition
�

is
�

no� w� generated� from
	

the

concrete� syntax� definition.
�

Note
�

that

the

high
�

e� xpressi� v� eness� of� S
�

D
�

F
� and� Abstract

�
S
�

D
�

F
� ,� and� their

close� corre-�

spondence� are� k

e� y! f
	
actors� for

	
the

feasibility
	

of� generating� abstract� from
	

concrete� syn-�

tax.

Standard,
�

Y
"

acc-lik� e� concrete� syntax� definition
�

languages
�

are� not� satisf� actory� in
�

this

respect.# Since
�

their

e� xpressi� v� eness� is
�

lo
�

w� ,� and� LR
$

restrictions# require# non-natural� lan-
�

guage� descriptions,
�

generating� abstract� syntax� from these

languages w� ould� result in
a� wkw� ardly� structured� ASTs, which� b

%
urden& the

component� programmers.'

4
(

Generating library
)

code

In this

section� we� will� discuss
�

the

generation� of� library code� (see
*

Figures 2 and� 4).
+

Our
,

language tool

de
�

v� elopment� architecture� contains� code� generators� for se� v� eral� lan-
guages� and� consequently� allo� ws� components� to

be

%
de
�

v� eloped� in dif
�

ferent languages.
Since
�

ATerms� are� used& as� uniform& e� xchange format, components� implemented in dif-
�

ferent programming' languages can� be
%

connected� to

each� other� .

4.1 Tar- geting. C
/

For� the

programming' language C
0

an� ef� ficient ATerm� implementation e� xists as� a� sep-�

arate� library. This implementation consists� of� an� API which� hides the

ef� ficient binary
%

representation of� ATerms� based
%

on� maximal sharing� and� pro' vides� functions to

access,�

manipulate, tra

v� erse,� and� e� xchange ATerms.�

The a� v� ailability� of� the

ATerm� library allo� ws� generic� language components� to

be
%

implemented in C
0

which� can� perform' low-le� v� el� operations� on� arbitrary� parse' trees

as�

well� as� on� abstract� syntax� trees.

A
�

more
 high-le
�

v� el� access� to

parse' trees

is
�

pro' vided� by
%

the

code� generator� asdf2c
which,� when� passed' an� abstract� syntax� definition,

�
produces' a� library

�
of� match
 and� b

%
uild&

functions.
	

These
�

functions
	

allo� w� easy� manipulation
 of� parse' trees

without� ha
�

ving� to

kno

w� the

e� xact� structure� of� parse' trees.

These
�

high-le
�

v� el� functions
	

are� type-preserving

with� respect# to

the

Abstract
�

S
�

D
�

F
� definition.

�

92 Merijn de Jonge and Joost Visser

www.manaraa.com

4.2
�

T
�

ar� geting� J
�
a� v� a�

Also
�

for
�

the
	

Ja

v� a� programming
 language
�

an� implementation
�

of� the
	

A
�

T
�

erm� API
�

e� xists�

which� allo� ws� Ja

v� a� programs
 to
	

operate� on� parse
 trees
	

and� abstract� syntax� trees.
	

As
�

yet,�

there
	

is
�

no� code� generator� for
�

Ja

v� a� a� v� ailable� to
	

pro
 vide� high
�

le
�

v� el� access� and� tra
	

v� ersals�

of� trees
	

similar� to
	

the
	

other� supported� programming
 languages.
�

Such
�

a� code� generator�

has
�

been
�

designed
�

and� is
�

being
�

de
�

v� eloped.� It
�

will� represent� syntax� trees
	

as� object� trees,
	

and� tree
	

tra
	

v� ersals� will� be
�

supported� by
�

generated� libraries
�

of� refinable� visitors.�

4.3 Tar� geting� Stratego

Our
!

initial interest w� as� to
	

apply� our� meta-tooling to
	

program
 transformation
	

problems,

such� as� automatic� softw� are� renov� ation.� For� this
	

reason we� selected� the
	

transformational
	

programming
 language Strate
�

go� [17]
"

as� the
	

first tar
	

get� of� code� generation.� Strate
�

go�

of� fers po
 werful� tree
	

tra
	

v� ersal� primiti
 v� es,� as� well� as� adv� anced� features such� as� separation�

of� pattern-matching
 and� scope,� which� allo� ws pattern-matching
 at� arbitrary� tree
	

depths.
�

Furthermore,
#

Strate
�

go� has
�

b
�
uilt-in$ support� for

�
reading� and� writing� A

�
T

�
erms.� Strate

�
go�

also� of� fers
�

a� notion� of� pseudo-constructors,
 called� o% verlays& ,' that
	

can� be
�

used$ to
	

operate�

on� full
�

parse
 trees
	

using$ a� simple� AST
�

interf
�

ace.�

T
�

w� o� meta-tools(support� the
	

generation� of� Strate
�

go� libraries
�

from
�

syntax� descrip-
�

tions.
	

The
�

library
�

for
�

AST
�

processing
 is
�

generated� by
�

asdf2stratego from
�

an�

Abstract
�

S
�

D
)

F
* definition.

�
The
�

library
�

for
�

combined� parse� tree
�

and� AST
	

processing� is

generated� by
�

sdf2stratego from
�

an� S

D
�

F
� grammar� . The

�
latter
�

library
�

subsumes� the
�

former
�

.
The Strate

go� code� generation� allo� ws� programming� on� parse� trees

�
as� if the

�
y� were�

ASTs. Underneath
�

such� AST-style manipulations, parse� trees
�

are� processed� in which�

hidden layout and� literal information is preserv� ed� during
�

transformation.
�

This style� of�

programming� can� be
�

mixed� freely with� programming� directly
�

on� parse� trees.
�

Since

Strate

go� has nativ� e� ATerm� support,� there
�

is no need for generating� library code� for
reading and� writing� trees.

�

4.4
�

T
�

ar� geting� Hask
�

ell�

W
�

ork� has
�

also� been
�

done
�

on� tar
�

geting� Hask
�

ell.� Code

generated� in

this
�

case� is

of� v� ar� -
ious

kinds.
!

Firstly
"

,# datatypes
�

are� generated� to
�

represent$ parse� trees
�

and� ASTs.
	

These
�

datatypes
�

are� quite% similar� to
�

the
�

signatures� generated� for
�

Strate

go� . Secondly

,# code� is

generated� for
�

reading$ A
	

T
�

erm� representations$ into

these
�

Hask
�

ell� datatypes
�

and� writing�

them
�

to
�

A
	

T
�

erms.� Finally
"

,# full-fledged
�

transformation
�

frame
�

w� orks� consisting� of� (monadic)
&

paramorphisms� and� corresponding� algebras� are� generated� to
�

facilitate� purely� functional
transformational
�

programming.� The reader is referred to
�

[14]
'

for details
�

and� for a� soft-�

w� are� renov� ation� case� study� .

Note
(

that
�

not) only� general� purpose� programming� languages
�

of� v� arious� paradigms� can�

be
�

fitted
*

into

our� architecture,� b
�
ut+ also� more, specialized,� possibly� v� ery� high-le

�
v� el� lan-

�

guages.� An
	

attrib� ute+ grammar� system,� for
�

instance,

w� ould� be
�

a� con� v� enient� tool
�

to
�

pro-�

gram� certain� tree
�

transformation
�

components.�

93Grammers as Contracts

www.manaraa.com

Input
Term
� Output

�

Term

Pretty PrinterParser

Component
�

Library

Parsetree
�

Parsetree

Component
�

Library

ASTAST

ast2parsetree�
Definition
� Syntax

�Abstract

parsetree2ast

Definition
� Syntax

�Concrete

Fig.� 7. Complete
	

meta-tooling architecture.
 The grammar� serv� es
 as
 the
�

contract� go� v� ern-

ing all
 tree
�

e
 xchange.

5 A
�

comprehensive architecture

Combining
	

the
�

partial� architectures
 of� the
�

foregoing� subsections� leads to
�

the
�

complete�

architecture
 in Figure 7
�

. This figure can� be
�

vie� wed� as
 a
 refinement of� our� first general�

architecture
 in Figure 1,� which� does
�

not dif
�

ferentiate between
�

concrete� and
 abstract

syntax,� or� between
�

parse� trees
�

and
 ASTs.
The refined picture� sho� ws� that

�
all
 generated� code� (libraries

�
and
 components),� and

the
�

abstract
 syntax� definition
�

stem� from the
�

same� source:� the
�

grammar� . Thus, this
�

grammar� serv� es
 as
 the
�

single� contract� that
�

go� v� erns
 the
�

structure� of� all
 trees
�

that
�

are

e
 xchanged.� In
�

other� w� ords,� all
 component� interf
�

aces
 are
 defined
�

in
�

a
 single� location:
�

the
�

grammar� . (When
�

se� v� eral
 languages
�

are
 in
�

v� olv� ed,
 there
�

are
 of� course� equally
 man� y�

grammars.)� This

single� contract� approach
 eliminates
 man� y� maintenance� headaches
!

dur
�

-
ing
�

component� based
�

de
�

v� elopment.
 Of
"

course,� careful� grammar� v� ersion
 management� is
�

needed# when� maintenance� due
�

to
�

language
�

changes� is
�

not# carried� out� for
$

all
 components�

at
 once.�

5.1
%

Grammar
&

v' ersion(management)

An
*

y� change� to
�

a
 grammar� ,� no# matter� ho
!

w� small,� potentially� breaks
�

all
 tools
�

that
�

depend
�

on� it.
�

Thus,

sharing� grammars� between
�

tools
�

or� between
�

tool
�

components,� which� is
�

94 Merijn de Jonge and Joost Visser

www.manaraa.com

a� crucial� feature
�

of� our� architecture,� is
�

potentially� at� odds� with� grammar� c	 hang

e� . T
�

o�

pacify� grammar� change� and� grammar� sharing,
 grammar� management� is
�

needed.�

T
�

o� f
�
acilitate� grammar� v� ersion� management,� we� established� a� Gr

�
ammar� Base

�
,� in

�

which� grammars� are� stored.
 Furthermore,
�

we� subjected
 the
�

stored
 grammars� to
�

simple

schemes
 of� grammar� v� ersion� numbers and� grammar� maturity lev� els.�

T
�

o� allo� w� tool
�

b
�
uilders� to

�
unequi� v� ocally� identify

�
the

�
grammars� the

�
y� are� b

�
uilding� their

�

tool
�

on,� each� grammar� in
�

the
�

Grammar
�

Base
�

is
�

gi� v� en� a� name� and� a� v� ersion� number� . T
�

o�

gi� v� e� tool
�

b
�
uilders� an� indication

�
of� the

�
maturity� of� the

�
grammars� the

�
y� are� using� to

�
b

�
uild�

their
�

tools
�

upon,� all grammars� in
�

the
�

Grammar
�

Base
�

are� labeled
�

with� a� maturity� le
�

v� el.�

W
�

e� distinguish
�

the
�

follo
�

wing� le
�

v� els:�

v olatile! The grammar� is still
 under� de
�

v� elopment.�

stable" The grammar� will� only� be
�

subject
 to
�

minor changes� due
�

to
�

b
�
ug� fixing.

immutable
#

The
�

grammar� will� ne� v� er� change.�

Normally
$

,� a� grammar� will� be
�

gin� its life c� ycle� at� maturity lev� el� volatile% . To� b
�
uild� e� xten-

si
 v� e� tooling
�

on� such
 a� grammar� is unwise,� since
 grammar� changes� are� to
�

be
�

e� xpected
that
�

will� break
�

this
�

tooling.
�

Once
&

confidence� in the
�

correctness� of� the
�

grammar� has
gro� wn,� usually� through

�
a� combination� of� testing,

�
bench-marking,
�

and� code� inspection,
it becomes

�
eligible� for maturity lev� el� stable' . At this

�
point,� only� v� ery� local changes� are�

still
 allo� wed� on� the
�

grammar� ,� usually� to
�

fix
(

minor� b
�
ugs.� T

�
ool-b� uilders� can� safely
 rely)

on� stable
 grammars� without� risking) that
�

their
�

tools
�

will� break
�

due
�

to
�

grammar� changes.�

Only
&

a� fe
�

w� grammars� will� mak� e� it
�

to
�

le
�

v� el� immutable
*

. This
�

happens
+

for
�

instance
�

when�

a� grammar� is
�

published,� and� thus
�

becomes
�

a� fix
(

ed� point� of� reference.) If
,

the
�

need� for
�

changes� arises� in
�

grammars� that
�

are� stable
 or� immutable,
�

a� ne- w. grammar� (possibly
/

the
�

same
 grammar� with� a� ne� w� v� ersion� number)� will� be
�

initiated
�

instead
�

of� changing� the
�

grammar� itself.
�

5.2
�

Connecting
�

components�

The
�

connecti� vity� to
�

dif
�

ferent
	

programming
 languages
�

allo� ws
 components� to
�

be
�

de
�

v� el-�

oped� in the
�

programming
 language of� choice.� The use� of� ATerms� for the
�

representation
of� data

�
allo� ws
 easy� and� ef� ficient e� xchange of� data

�
between

�
dif
�

ferent components� and�

it enables� the
�

composition� of� new
 and� e� xisting components� to
�

form adv� anced� language
tools.
�

Exchange
�

between
�

components� and� the
�

composition� of� components� is
�

supported� in
�

se� v� eral� w
 ays.� First,
�

components� can� be
�

combined� using� standard� scripting� techniques
�

and� data
�

can� be
�

e� xchanged� by
�

means� of� files.
�

Secondly
�

,� the
�

uniform� data
�

representation�

allo� ws
 for
	

a� sequential� composition� of� components� in
�

which
 Unix
�

pipes
 are� used� to
�

e� xchange� data
�

from
	

one� component� to
�

another� . Finally
�

,� the
�

T
�

oolBus� [3
�

]
�

architecture�

can� be
�

used� to
�

connect� components� and� define
�

the
�

communication� between
�

them.
�

This
�

architecture� resembles� a� hardw
�

are� communication� b
�
us� to

�
which
 indi

�
vidual� components�

can� be
�

connected.� Communication

between
�

components� only� tak
�

es� place
 o� v� er� the
�

b
�
us�

and� is formalized in terms
�

of� Process Algebra [1].
�

95Grammers as Contracts

www.manaraa.com

6 Applications

Only
�

preliminary experience is available about actually applying the meta-tooling pre-
sented� in the previous sections. We will present a selection of such experiences.

To start with, the meta-tooling has been applied for its own development, and for
the
�

development of some other meta-tools that it is bundled with in the Transforma-
tion
�

Tools package XT. These bootstrap flavored applications include the generation
of� an abstract syntax definition for the parse tree format AsFix from the grammar of
S

�
D

�
F. From this abstract syntax definition, a modular Stratego library for transforming

AsFix
�

trees was generated and used for the implementation of some AsFix normal-
ization
�

components. Also, the tools sdf2stratego,	 sdfcons,	 asdf2stratego,	
sdf2asdf,	 and many more meta-tools were implemented by parsing, AST processing
in
�

one or more components, and pretty-printing.
Apart from SDF and
 AbstractSDF,	 the domain specific languages BOX (for

�
generic

formatting), and BENCH (for
�

generating benchmark reports), have been implemented
with� syntax-driven meta-tooling. In the BOX implementation, a grammar for pretty-
print
 tables was built by reusing the SDF grammar� and the BOX grammar� . New BOX

components� were implemented in Stratego and connected to existing BOX components�

programmed
 in other languages.
The generated transformation frameworks for Haskell are being applied to software

renovation problems. In [14], a COBOL renovation application is reported. It involves
parsing
 according to a COBOL grammar, applying a number of function transform-
ers� to solve a data expansion problem, and unparsing the transformed parse trees. The
functional
�

transformers have been constructed by refining a transformation framework
generated� from the COBOL grammar. Application to the development of documenta-
tion
�

generators [10] has commenced.

7 Related work

Syntax-dri
�

ven meta-tools for language tool development are ubiquitous, but rarely do
the
�

y address a combination of features such as those addressed in this paper. We will
briefly
�

discuss a selection of approaches some of which attain a degree of integration of
v� arious features.

– Parser generators such as Yacc [12] and JavaCC are meta-tools that generate parsers
from
�

syntax definitions. Compared with SD
�

F and
 sglr ,	 they offer poor support
for
�

modular� syntax� definition, their input languages are not sufficiently declarative
to
�

be reusable for the generation of other components than parsers, and they do not
generally� target more than a single programming language.

– The language SYN [4] combines notations for specifying parsers, pretty-printers
and
 abstract syntax in a single language. However, the underlying parser generator
is limited to LALR(

�
1), in order to have both parse trees and ASTs, users need to

construct� two grammars, and code the mapping between trees by hand. Moreover,
the
�

expressiveness of the language is much smaller than the expressiveness of SD
�

F,	
and
 the language is not modular. Consequently, SYN and
 its underlying system can
not� meet our adaptability, scalability and maintainability requirements.

96 Merijn de Jonge and Joost Visser

www.manaraa.com

– W
�

ile
�

[20
�

]
�

describes
�

deri
�

v� ation� of� abstract� syntax	 from

concrete� syntax.	 Lik
�

e
 us� he
�

uses� a� syntax	 description
�

formalism

more� e
 xpressi� v� e
 than
�

Y
�

acc’� s	 BNF
�

notation� in
�

order� to
�

a� v� oid� w� arped� ASTs.
�

Additionally
�

,� he
�

pro� vides� a� procedure� for

transforming
�

a� Y
�

acc-style� grammar� into
�

a� more� “tasteful” grammar� . His
�

BNF
�

e
 xtension� allo� ws�

annotations� that
�

steer	 the
�

mapping� with� the
�

same	 ef
 fect

as� S
�

D
�

F
� ’s	 aliases.� He

�
does
�

not� discuss
�

automatic� name� synthesis.	

– AsdlGen [19]
�

pro� vides� the
�

most comprehensi� v� e
 approach� we� are� a� w� are� of� to
�

syntax-	

dri
�

v� en
 support	 of� component-based� language tools.
�

It generates� library code� for
v� arious� programming� languages from abstract� syntax	 definitions.

�
It of� fers ASDL as�

abstract� syntax	 definition
�

formalism, and� pic� kles

as� space-ef	 ficient e
 xchange for-
mat. It of� fers no support	 for dealing

�
with� concrete� syntax	 and� full parse� trees.

�

AsdlGen
�

tar
�

gets� more� languages
!

than
�

our� architecture� instantiation
�

does
�

at� the
�

mo-�

ment.� The
"

choice� of� tar
�

get� languages,
!

including
�

C
#

and� Ja
$

v� a,� has
�

presumably� moti-�

v� ated� some	 restrictions% on� the
�

e
 xpressi� v� eness
 of� A
�

SD
�

L
& . A

�
SD

�
L

& lacks
!

certain� mod-�

ularity� features,

compared� to
�

Abstract
�

S
�

D
�

F
� : no� mutually� dependent

�
modules,� and�

all� alternati� v� es
 for

a� non-terminal� must� be
'

grouped� together
�

. Furthermore,
(

A
�

SD
�

L
& is

�

much less e
 xpressiv� e.
 It does
�

not allo� w� nesting of� comple� x symbols,	 it has a� v� ery

limited range of� symbol	 constructors,� and� it does
�

not pro� vide� module renamings or�

parameterized� modules.
Unlik
)

e
 ATerms,
 the
�

e
 xchange format that
�

comes� with� ASDL is al� w� ays� typed,
�

thus
�

obstructing� integration� with� generic� components.� In fact,� the
�

compression� scheme	

of� A
�

SD
�

L
& relies% on� the

�
typedness
�

of� the
�

trees.
�

The
"

rate% of� compression� is
�

significantly	

smaller	 than
�

for

A
�

T
"

erms
 [5
*

].
�

Furthermore,
(

pickles� ha
�

v� e
 a� binary
'

form

only� .
– The

"
DTD

+
notation� of� X

,
M
-

L
�

[8
.

]
�

is
�

an� alternati� v� e
 formalism

in
�

which� abstract� syntax	

can� be
'

defined.
�

T
"

ools� such	 as� HaXML
�

[18]
�

generate� code� from

DTDs.
+

HaXML
�

of� fers

support	 both
'

for

type-based
�

and� for

generic� transformations
�

on� XML
,

docu-
�

ments,� using� Hask
�

ell
 as� programming� language.
!

Other
/

languages
!

are� not� tar
�

geted.�

Concrete
#

syntax	 support	 is not integrated.�

XML is originally� intended as� mark-up language, not to
�

represent abstract� syntax.	

As a� result, the
�

language contains� a� number of� inappropriate constructs,� and� some	

a� wkw� ard� irregularities� from an� abstract� syntax	 point� of� vie� w� . XML also� has some	

desirable
�

features, currently� not of� fered by
'

AbstractS
�

DF,� such	 as� annotations,� and�

inclusion
�

of� DTDs
+

(abstract
0

syntax	 definitions)
�

in
�

documents
�

(abstract
0

terms).
�

– Man
-

y1 elements
 of� our� instantiation
�

of� the
�

architecture� for

syntax-dri	 v� en
 component-�

based
'

language tool
�

de
�

v� elopment
 were� originally� de
�

v� eloped
 in the
�

conte� xt of� the
�

A
�

SF
� +2 S

�
D

�
F

� Meta-En
3

vir4 onment5 [2
�

,� 11,� 9
6

].
�

This
"

is
�

an� inte
�

grated� language
!

de
�

v� elopment

en
 vironment� which� of� fers

S
�

D
�

F
� as� syntax	 definition

�
formalism

and� the
�

term
�

re% writ-�

ing language ASF as� programming� language. Programming tak
�

es
 place� directly
�

on�

concrete� syntax,	 thus
�

hiding parse� trees
�

from the
�

programmers� vie� w� . Programming,
deb
�

ugging,� parsing,� rewriting� and� pretty-printing� functionality are� all� of� fered via� a�

single	 interactiv� e
 user� interface.� Meta-tooling has been
'

de
�

v� eloped
 to
�

generate� ASF-
modules for term

�
tra

�
v� ersal
 from S

�
DF definitions

�
[6

7
].
�

The
"

A
�

SF
� +2 S

�
D

�
F

� Meta-En
-

vironment� of� fers

a� single	 programming� language
!

(
0
A

�
SF

�),
8

programming� on� abstract� syntax	 is
�

not� supported.	 Support
�

for

component-based�

de
�

v� elopment
 is
�

(currently)
0

limited
!

to
�

gluing� compiled� A
�

SF
� programs� that

�
read% and�

write� flat
9

terms.
�

97Grammers as Contracts

www.manaraa.com

T
�

o� pro� vide� support� for
�

component-based� tool
�

de
	

v� elopment,
 we� ha
�

v� e
 adopted
 the
�

S
�

D
�

F
� ,� AsFix,

�
and
 A

�
T

�
erm
 formats

�
from

�
the
�

A
�

SF
� +� S

�
D

�
F

� Meta-En
�

vironment� as
 well�

as
 the
�

parse� table
�

generator� for
�

S
�

D
�

F
� ,� the

�
parser� sglr ,� and
 the

�
A

�
T

�
erm
 library

�
. T

�
o�

these
�

we� ha
�

v� e
 added
 the
�

meta-tooling� required� to
�

complete� the
�

instantiation
�

of� the
�

architecture� of� Figure
�

7
�

. In
�

future,
	

some
 of� these
�

meta-tools� might� be
�

inte
�

grated

into
�

the
�

Meta-En
�

vironment� .

8 Contributions�

W
�

e� ha
�

v� e� presented� a� comprehensi� v� e� architecture� for
	

syntax-dri
 v� en� meta-tooling� that
�

supports
 component� based
�

language
�

tool
�

de
�

v� elopment.� This
�

architecture� embodies� the
�

vision� that
�

grammars
 can� serv
 e� as� contracts� between
�

components� under� the
�

condition�

that
�

the
�

syntax
 definition
�

formalism
	

is
�

suf
 ficiently
�

e� xpressi� v� e� and� the
�

meta-tools� sup-

porting� this
�

formalism
	

are� suf
 ficiently
�

po� werful.� W
�

e� ha
�

v� e� presented� our� instantiation
�

of�

such
 an� architecture� based
�

on� the
�

syntax
 formalism S
�

DF. S
�

DF and� the
�

tools
�

supporting

it hav� e� agreeable� properties� with� respect to
�

modularity,� e� xpressiv� eness,� and� ef� ficiency� ,�
which� allo� w� them

�
to
�

meet scalability
 and� maintainability demands
�

of� application� areas�

such
 as� softw
 are� renov� ation� and� domain-specific
�

language implementation. W
�

e� hav� e�

sho
 wn� how� abstract� syntax
 definitions
�

can� be
�

obtained� from grammars.
 W
�

e� discussed
�

the
�

meta-tooling which� generates
 library code� for a� v� ariety� of� programming� languages
from concrete� and� abstract� syntax
 definitions.

�
Components

�
that

�
are� constructed� with�

these
�

libraries can� interoperate by
�

e� xchanging ATerms� that
�

represent trees.
�

Ac

knowledgments
!

The
�

authors� thank
�

Arie
"

v� an� Deursen
#

and� Eelco
$

V
%

isser
�

for
	

v� aluable�

discussions.
�

References

1. J. Baeten and& W.' Weijland. Process(Algebra) . Cambridge Tracts in Theoretical Computer
*

Science 18. Cambridge
*

Uni
+

versity, Press, 1990.
2. J. A. Bergstra,- J.

.
Heering, and P. Klint. The algebraic& specification/ formalism ASF. In

J. Ber
0

gstra, J.
.

Heering, and& P. Klint,
1

editors,, Alg
2

ebraic Specification,3 ACM Press Frontier
4

Series, pages5 1–66. The
6

A
7

CM
*

Press
8

in
�

co-operation with Addison-Wesley� , 1989.
3.
�

J. A. Bergstra- and& P. Klint. The ToolBus coordination architecture.& In P. Ciancarini and
C. Hankin,

�
editors, Coordination Langua

9
ges� and) Models

:
(COORDINA

2
TION’96)
�

, volume�

1061 of� Lecture Notes
�

in Computer Science,3 pages 75–88. Springer
	

-Verlag,, 1996.
4.

R. J. Boulton.
0

SYN: A
7

single language for
�

specifying/ abstract& syntax/ trees, le
�

xical analysis,
parsing and& pretty-printing. Technical report, Computer

*
laboratory,3 Uni

+
v
 ersity, of� Cambridge,

*

1996.
5.
�

M. G.
�

J.
.

van den
�

Brand, H.
�

A. de Jong,
.

P. Klint, and P.' A. Olivier
 . Ef
;

ficient
�

annotated terms.
<

Software� , Practice &
�

Experience,3 30(3):259–291, 2000.
6.
�

M. G. J. v
 an& den
�

Brand, M. P.' A. Sellink, and C.
*

Verhoef. Generation
�

of components for
software& renov
 ation& factories& from conte� xt-free grammars.- In Proceedings(Fourth(Working
Conference� on(Reverse Engineering, pages 144–153. IEEE, 1997.

7.
�

M. G. J.
.

van den
�

Brand, M. P. A. Sellink, and& C.
*

Verhoef. Current
*

parsing techniques in
software& renov
 ation& considered harmful. In Proceedings(of(the sixth� International W

�
orkshop(

on Pr
�

ogram Comprehension� , pages 108–117. IEEE, 1998.

98 Merijn de Jonge and Joost Visser

www.manaraa.com

8.
�

T. Bray, J. P
�

aoli,� and� C.
�

M. Sperber
�

g-McQueen.� Extensible
�

Markup Language (XML) 1.0.
Technical Report REC-xml-19980210, W

�
orld� Wide W

�
eb� Consortium, 1998.

9.
�

A. van Deursen,
�

J.
�

Heering, and� P.	 Klint, editors. Langua

g� e� Pr
�

ototyping: An
�

Alg
�

ebraic�

Specification Appr
�

oac
 h, volume 5 of AMAST
�

Series
	

in

Computing
�

.	 W
�

orld� Scientific, 1996.
10. A. v� an� Deursen and T.	 Kuipers. Building documentation generators.� In Proceedings;
 IEEE

International Conference� on
 Software� Maintenance, pages� 40–49. IEEE Computer Society
�

Press, 1999.
11. J. Heering, P.	 R. H. Hendriks, P. Klint,

�
and� J. Rek

ers. The

�
syntax� definition formalism SDF

— Reference manual. SIGPLAN
	

Notices
�

,� 24(11):43–75, 1989.
12. S. C. Johnson. YACC - Yet Another Compiler-Compiler. Technical Report Computer Sci-

�

ence No. 32,
�

Bell Laboratories,
�

Murray Hill,
�

New Jerse
�

y, 1975.
13. M. de

�
Jonge. A Pretty-Printer for Every Occasion.	 In I. Ferguson,� J. Gray,� and L. Scott,

�
edi-�

tors, Proceedings
 of
 the� 2nd International Symposium on Constructing Softwar
	

e Engineering
Tools (CoSET2000)

�
. Uni

�
v� ersity� of W

�
ollongong,� Australia, 2000.

14. J. Kort, R. L
�

ämmel,� and� J.
�

Visser.	 Functional transformation systems.� In
�

Pr
�

oceedings of the�

9th International W
�

orkshop� on� Functional and Logic� Programming, Sept.
�

2000.
15. J. Rekers. Parser Gener

�
ation� for

�
Interactive� Environments. PhD thesis,

�
Univ� ersity of	 Ams-

terdam, 1992.
16. E. V

isser
�

. Syntax Definition
�

for
�

Langua
�

g� e Prototyping. PhD thesis,
�

Uni
�

v� ersity� of	 Amsterdam,
1997.

17. E. Visser.� Strategic	 pattern
 matching. In Rewriting� Tec
 hniques
�

and Applications (RTA’99),�
volume 1631 of	 Lectur

�
e Notes

�
in Computer Science

�
,� pages 30–44. Springer

�
-Verlag,� 1999.

18. M. Wallace and� C. Runciman.
�

Hask
�

ell and XML:
�

Generic
�

Combinators

or T
�

ype-Based�

Translation? In International Conference
 on� Functional Progr� amming (ICFP’99),
�

Paris,
Fr� ance,� A

�
CM SIGPLAN,� Sept. 1999.

19. D. C.

W
�

ang,� A.
�

W. Appel,
�

J.
�

L.
�

K
�

orn,	 and C. S.
�

Serra. The Zephyr
�

abstract� syntax description
language. In Proceedings of the USENIX Conference
 on� Domain-Specific Languag� es,� pages
213–28, Berkele� y, CA, Oct. 15–17 1997. USENIX Association.

20. D. S.
�

W
�

ile. Abstract
�

syntax from
�

concrete� syntax. In Pr
�

oceedings� of the� 19th International
�

Conference
 on� Software
 Engineering (ICSE ’97),� pages 472–480,
�

Berlin - Heidelber
�

g	 - Ne

w
York, May 1997. Springer

�
.

99Grammers as Contracts

www.manaraa.com

G. Butler and S. Jarzabek (Eds.): GCSE 2000, LNCS 2177, pp. 100-113, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Generic Components: A Symbiosis of Paradigms

Martin Becker

System Software Research Group
University of Kaiserslautern

D-67653 Kaiserslautern, Germany
mbecker@informatik.uni-kl.de

Abstract. Software reuse and especially the paradigm of software components
are promising approaches to increase the efficiency of software development.
One of the basic problems of software reuse, however, is the tradeoff between
the abstraction from project-specific aspects and the actual contribution of a re-
usable artifact. Stringent resource constraints further complicate the application
of these approaches in domains, where efficient and therefore specialized solu-
tions are required, e.g. in the domain of embedded systems. Generic compo-
nents – designed to be adaptable to new application scenarios – allow to over-
come these limitations, esp. if they automate the essential modifications. This
paper presents a concept of generic components that has been developed to fa-
cilitate the construction of highly specialized embedded operating systems. Be-
sides the illustration of the underlying concept, the paper discusses the external
representation of generic components and the internal realization of the required
variability and reflects some of our experiences in constructing generic compo-
nents.

1 Introduction

The highly competitive and dynamic field of software development implies the need
to continuously increase the efficiency of the construction and evolution of software
products. For a long time reuse of software artifacts in general and of standard com-
ponents in particular have been promising approaches [16, 18] to achieve this goal
through the consequent and efficient exploitation of the commonalities among pro-
duced software artifacts. However, there are inherent problems with both techniques.
Firstly, software artifacts have to be made sufficiently abstract to be reusable, i.e. to
be applicable in different deployment situations, while at the same time need to be
sufficiently concrete to bear a reuse benefit at all. With component-based software
development this gets even worse, since the components are typically intended to be
reused in a black box fashion and thus often do not support their customization at
compile-time in regard to individual demands. Secondly, the evolution of prefabri-
cated software artifacts – e.g. caused by changing requirements – in most cases results
in a rise of complexity that further degrades the performance and thus often prohibits
their reuse. This holds especially if tight resource constraints have to be met, e.g. in
the domain of embedded systems.

www.manaraa.com

Generic Components: A Symbiosis of Paradigms 101

To deal with the required variability, generative programming techniques, e.g. as
presented in [7], are sound approaches, since they also pursue reuse on the level of the
production process instead solely on the product level. The variability among the
artifacts thus can be more effectively managed and even be formulated in the context
of the problem space. But there are problems with pure generative approaches, too.
Domain-specific default assumptions have to be applied, otherwise the complexity of
the problem specification and the underlying generator would be of the same magni-
tude as the implementation complexity of the whole problem itself. Again, the trade-
off between default solutions and the need for individual optimizations is likely to
appear. As a consequence manual specializations have to be considered within the
reuse activities as well, if the efficiency of the results is essential. The challenge is to
combine different reuse strategies in a way that exploits the benefits of each approach.
Code generation can be used to supplement the reuse of software components by
automating their otherwise time-consuming and error-prone customization. Pre-
planned manual optimizations within the reusable artifacts can be supported by pro-
viding adequate implementation constraints and knowledge, etc.

We have developed an approach based on the component and the generation para-
digm in the domain of embedded operating systems to address the aforementioned
problems. It has been coined by the stringent resource constraints, such as scarce
memory and low cost CPUs, in combination with varying nonfunctional require-
ments, like robustness and timeliness. The resulting efficiency constraints – often the
most crucial criterion for the success or failure of a software project within this do-
main – make conventional reuse approaches especially problematic in this context,
since they necessitate even unique tailor-made solutions that are very hard to reuse
efficiently in following projects. To address this problem, the concept of generic
components has been developed. Generic components provide means to ease their
tailoring according to individual requirements; they combine the technique of reusing
prefabricated software artifacts with the goal of producing specialized software. Most
of the variability provided by them can be automated by generators accomplishing
even fine-grained optimizations on the level of source code, but also unique customi-
zations are supported. Obviously, the combination of the component and the genera-
tion paradigm only becomes possible through a weakening of the conventional com-
ponent notion. With generic components also grey-box reuse has to be considered.

Although this integrative concept has been developed for the domain of embedded
operating systems, it should also be applicable in other domains – provided that a
known and manageable set of component variants is likely to cover the majority of
possible requirements. This paper presents our concept of generic components and
focuses on their external representation and some general facts concerning the internal
realization of the provided variability. The rather process-related questions of map-
ping requirements to appropriate component selections and configurations in our
approach is covered by companion papers [3, 4].

The remainder of this paper is structured as follows: Section 2 introduces the con-
cept of generic components in-depth. Section 3 covers the external representation of
generic components. In Section 4 several approaches to implement generic compo-
nents are discussed. Finally, in Section 5, we draw some conclusions.

www.manaraa.com

Martin Becker 102

2 The Concept of Generic Components

Conventional component-based software development not considering customizations
at compile-time reaches its limits where tailor-made solutions are required to meet
stringent nonfunctional requirements. To address this, the concept of generic compo-
nents [2] has been developed, an approach for delivering software solutions that –
despite of relying on the reuse of components – are customized to the settings of a
specific application domain. Generic components combine the techniques of reusing
prefabricated software artifacts with the goal of producing specialized software.

A generic component can be defined as a software module allowing to choose its
properties to a certain degree without necessarily having to write or change code
manually. The choice of properties may concern both functional and nonfunctional
aspects, e.g. the choice of algorithms or data structures and the adaptation of the com-
ponent's interface. To support this
kind of customization, so-called
generic parameters together with
their respective range of supported
values are identified at the compo-
nent's customization interface. These
are the externally visible setscrews to
control the instantiation of the ge-
neric component into a conventional
one (cf. Fig. 1). Within the generic
components so-called variation
points – placeholders for the variable
parts of code – can be identified that
are replaced with concrete code
fragments produced by generators in accordance to the actual values chosen for the
generic parameters during the instantiation. Typically only few parameters have an
impact on a variation point; they form the input to the specific generator that is asso-
ciated with this variation point. To subsume, customizing a generic component hence
means to choose actual values for the supplied generic parameters, and let appropriate
generators accomplish the necessary modifications. Besides a pure reduction of cus-
tomization effort, customizations on a higher level of abstraction can be supported
through the application of generative techniques, e.g. template meta programming, or
sophisticated code compilers. The application developer, for instance, applying ge-
neric components to construct embedded control systems does not need to know in
detail what changes within the components are required to provide thread preemption
or a delay() functionality. He only has to decide if the functionality is needed and
has to be informed about the additional resource requirements.

From the conceptual point of view a generic component is a kind of abstract repre-
sentative of a set of closely related software components with slightly different prop-
erties. Since it is only sensible to integrate such components in a generic component
that share a considerable amount of common code, generic components – according to
[17] – can be considered as a component family. The different family members can be
distinguished by the tuple of actual values, chosen from the subset of the Cartesian
Product over the generic parameters that contains the consistent parameter selections.

Fig. 1. Conceptual view on generic components.

. . .

(P1,P2,P3)

Generic Parameter
Variation Point
Custom. Interface

www.manaraa.com

Generic Components: A Symbiosis of Paradigms 103

As with program families, a thorough analysis of the presumably needed properties,
and the resulting commonalities and variabilities should take place before generic
components are implemented. Domain Analysis methods [8, 18] or the Multi-
Paradigm Design [6] can be used to this end.

2.1 Generic Parameters

Generic parameters – the pendants of run-time configuration parameters at compile-
time – allow to tailor the component’s properties by simply choosing one of the sup-
ported parameter values. Trivial properties like the value of a constant can be instanti-
ated as well as code fragments realizing special data structures or algorithms. Specific
adaptations concerning the runtime environment of the component, e.g. the type of
used hardware, can thus be handled within the component, instead of providing exter-
nal wrappers causing additional costs. Especially in the case of directly interacting
components, using function calls to communicate with each other, adaptations of the
calling interface are very useful. Furthermore, the interfaces of generic components
can be the target of the customization. Superfluous complexity [5] can be reduced in
this way by providing only the needed functionality. Finally, a tailoring of nonfunc-
tional properties of the component can be supported, e.g. an optimization concerning
the processing time or memory consumption at run-time. This tailoring is usually
driven by the wish to construct software components that meet the essential given
requirements and moreover support as many as possible of the desired properties, e.g.
little resource demands, reduction of the interface complexity, etc.

Three major approaches to tailor code that is used to replace a variation point can
be identified (cf. Fig. 2). Variation points are filled by selection if they are simply
replaced with discrete entities that are selected from a finite set of alternatives. Enti-
ties in this sense are pre-built parts of a
component implementation, e.g. data
structures, algorithms, or other code
fragments. In the case of generation,
the variation points are placeholders for
code fragments produced by associated
generators depending on the provided
actual values of the generic parameters.
The range of generator functionality
can reach from the simple insertion of
values for constants over the expansion
of small macros to sophisticated code
generation, where abstract descriptions
in form of the actual values are trans-
lated into concrete artifacts. With this type any generative technique can be utilized in
generic components. Where the aforementioned tailoring types do not provide suffi-
cient flexibility, variation points can be replaced by parameter substitution, i.e. a
variation point is substituted with the actual value of the respective parameters. In this
way, user-defined code can be inserted into the component. This type of tailoring
offers the highest degree of flexibility to the user and is typically used to handle code

Selection Generation Substitution

Fig. 2. Different types to tailor code that
replaces a variation point.

www.manaraa.com

Martin Becker 104

fragments that are unique in each component instantiation, e.g. individual optimiza-
tions. Besides the pure replacement of the parameter an important and nontrivial task
during the instantiation of a generic component can be the monitoring of the insertion.
In this case, the generator checks the provided code against some constraints or prede-
fined limits formulated by the implementer of the component. If a generic parameter
only controls customizations of the same type, esp. in the case of substitution, it is
sensible to speak of a selection, generation or substitution parameter. The mentioned
tailoring types represent different kinds of reuse. While a selection reuses concrete
artifacts, generation reuses the production methods, and substitution supports the
reuse of knowledge and constraints about prospective solutions.

In principle, it is reasonable to perform the customization hierarchically, i.e., new
generic parameters can be introduced with the code fragments that replace variation
points. However, a recursive introduc-
tion of new parameters while choosing
parameter settings adds a considerable
amount of complexity to the configura-
tion process. Therefore, it is sensible to
restrict the introduction of new generic
parameters to the tailoring by selection
as illustrated in Fig. 3. A typical sce-
nario where hierarchical parameter
introductions are used is the following:
a fixed number of implementations exist
for a variation point, e.g. different
hardware drivers , but the opportunity to
add a new implementation has to be
given to the user, too. This can be realized with a selection between the existing code
fragments and a frame that provides a substitution parameter. If the user decides to
provide new code, he selects the frame and afterwards supplies the new code by sub-
stituting the new parameter.

2.2 Objectives of the Approach

The concept of generic components has been developed to make the component para-
digm applicable even in domains where the black-box reuse of components typically
will not work, i.e. that tailor-made solutions are required for some reasons. Through
the identification of variation points and of generic parameters the customization at
compile time is supported allowing the tailoring of components in respect to stringent
requirements. Doing so, the generic components help to overcome the inherent ten-
sion between reusability and usefulness of conventional components. If feasible, the
tailoring complexity can be captured in pre-built fragments or sophisticated genera-
tors providing implementations for the variation points’ instantiation. Otherwise sub-
stitution parameters can be used to support the creation of new specializations through
the clear identification of the relevant variation points and the specification of imple-
mentation constraints and knowledge. Some kind of abstract components can be real-
ized in this way that are very useful in the case of highly individual and therefore not

 new parameter

Fig. 3. Hierarchical tailoring: introduction of a
new parameter though selection.

www.manaraa.com

Generic Components: A Symbiosis of Paradigms 105

reusable aspects, or yet unknown requirements and solutions. The clear identification
and the factorization of the common and variable parts is advantageous for the follow-
ing reasons: Firstly, the evolution of the generic components gets easier, e.g. as com-
mon code is not replicated in several component variants or as new variants created
by the user can be easily integrated into the respective generators. Secondly, the num-
ber of related components in reuse pools and therefore the complexity of their re-
trieval can be reduced in case of orthogonal variabilities. If a thread manager compo-
nent, for instance, offers generic parameters for the number of supported threads and
the kind of the used stacks, then a lot of different thread manager variants would have
to be in the reuse pool in order to meet stringent requirements. In the case of a generic
component only one component with corresponding generators is needed. With the
ability to flexibly adapt the implementation of the reused components, conventional
approaches to improve component reusability, which typically interfere with the over-
all system performance, can be avoided, e.g. the strict uncoupling of components, and
large inheritance hierarchies. To subsume, the concept of generic components ap-
proximates the advantages of manual customization and optimization, while on the
other hand sidestepping the obstacles of time-consuming and error-prone coding by
reusing prefabricated and tested implementations.

3 The User's Perspective on Generic Components

The reusability of software components strongly depends on their external representa-
tion. Comprehensive descriptions of the provided functionality, the interfaces, the
dependencies on other artifacts and their architectural embedding, etc are essential,
especially as the components are typically reused in a black-box fashion. This also
holds for generic components. Due to the variability provided by the generic compo-
nents, however, further information to represent the generic component in a compre-
hensive manner is required. From an external point of view, generic components
mainly differ from conventional ones in the provision of an additional customization
interface and in the fact, that some of the components' properties are kept variable.
Furthermore, some mechanism is supplied that supports the automatic tailoring of the
component according to the actual values chosen for the generic parameters. In the
following, however, we will concentrate on the customization interface and elaborate
the required information that has to be presented to the user of the generic component
to support its consistent configuration and application.

3.1 Customization Interface

A generic component in our sense is a kind of abstract representative of a family of
software components. It can be put into concrete shapes with the assignment of actual
values to the provided generic parameters. Therefore, at least the generic parameters
must be clearly identified to give the user an idea what can be tailored at all – but that
will not suffice. To scope the variability of the parameters, the range of supported
values for each of them has to be specified as well as the interdependencies among
them, typically restricting the number of consistent parameter selections. As the actual

www.manaraa.com

Martin Becker 106

values of substitution parameters are directly inserted into the generic component, it is
impossible to enumerate all supported values for this kind of parameter – otherwise
the substitution parameter should be replaced by a selection parameter. However, at
least the language and an abstract description of the expected code fragment can be
stated to facilitate the consistent parameter assignment in that case.

Since the users of generic components are naturally more interested in the results
of their tailoring than the tailoring itself, further information regarding the variable
properties should be given too. In our approach, this information is structured in so-
called feature types and features. A feature type comprises clearly distinguishable
features and represents a variable property of the component, e.g. scheduling strategy,
memory management strategy, or synchronization mechanism. Feature types thus
span the space of components that can be instantiated from a generic component. This
information, together with the description of the common features, is typically used to
determine in a very early stage, whether a generic component is applicable for the
specific problem or not.

Obviously the feature types of a generic component are somehow correlated with
its generic parameters. If this correlation is explicitly represented in the customization
interface, it can be used to determine the concrete features of the tailored component
before the final instantiation step. This feedback can be used for composability tests
and for further adjustment of the component, and therefore facilitates the selection of
an appropriate
actual parameter
set. For each fea-
ture type, a func-
tional dependency
on a subset of the
generic parameters
can be identified. In
our approach, this
set of feature-
dependency func-
tions is used to
represent the corre-
lation between a feature type and its parameters. One special case is worth to be men-
tioned: feature-dependency functions that are invertible can be used favorably to
determine parameters based upon the desired features. This significantly facilitates the
customization of a component. Fig. 4 subsumes the aforementioned points into a
formal representation of the customization interface. As the comprehensible descrip-
tion of the listed aspects is non-trivial and expensive, it may be reasonable to provide
less information at the cost of user support, e.g. the feature-dependency functions
could be omitted.

3.2 Parameter Dependencies

After the discussion of the information that has to be presented at the configuration
interface, we take a closer look at the configuration step itself. In practice, the generic

Representation of the customization interface CI:

With:
P = df {P1, ... ,Pn}, the set of generic parameters
Pi = df {p1, ... , pm(i)}, supported values for each parameter
PP = df P1 x … x Pn, the space of parameter selections
VS = df {pp ∈ PP | pp is a valid selection}, the set of valid selections
F = df {F1, ... , Fk}, set of feature types
Fi = df {f1, ... , fm(i)}, variety of features for the feature type Fi
PF = df F1 x … x Fk, the space of varying features
FDi = df VS → Fi, feature-dependency function

Fig. 4. Representation of the customization interface.

CI = df (P, (Pi), VS, F, (Fi), (FDi))

www.manaraa.com

Generic Components: A Symbiosis of Paradigms 107

parameters often are not independent of each other. Typically, it is possible to identify
hierarchical dependencies between them; i.e. the presence of some generic parameter
depends on the choice of actual values for others. For instance, a generic parameter
that is only supplied in the context of a distinct data structure does not have to be
considered if the data structure is not used in an actual configuration. Although this
information is already represented by the set of valid selections, the customization
complexity for the user can be further reduced if these parameter dependencies are
explicitly considered during the configuration step. Instead of a flat configuration,
where all parameters are visible throughout the customization, although a part of them
is not really needed, a hierarchical configuration should be preferred. Here only those
parameters that bear a meaning for the current level of choices are presented. This
approach typi-
cally results in
less parameters
and a more
intuitive way of
configuration,
but requires
more support in
the customiza-
tion interface
and the instan-
tiation of the
component. Eventually some backtracking has to be done in the case that a lower
level of configuration reveals the insufficient selection of a parameter on a higher
configuration level. In Fig. 5 an example to illustrate the different configuration ap-
proaches is given. The arrow between A and B denotes that B only has to be consid-
ered in the case A is set to 2. Obviously, the hierarchical approach facilitates the con-
figuration, e.g. no values have to be selected for parameters B and E unless the value
2 is chosen for A. The example additionally points out the two major reasons for
hierarchical dependencies. They are either caused by an implicit requires-dependency
as shown between A and B, or hierarchical tailoring (cf. Section 2) as with A and C.

3.3 Tool Support

Several approaches to represent the customization interface and to support the selec-
tion of actual values in a user-friendly way are reasonable. However, it becomes clear
that tool support, esp. for the feature-dependency functions and hierarchical configu-
ration, is indispensable. Therefore, we apply tools [3] based on the technique of ex-
tended design-spaces, a multi-dimensional classification scheme that allows to ex-
press such correlations between features and parameters as well as hierarchies of
parameters in a very natural and concise way [1, 14, 15]. The required information is
kept in so-called component spaces that are used by our tools to control the customi-
zation process. Besides the customization of generic components, a mechanism has to
be supplied that supports the automatic tailoring of the component in correspondence
with the chosen configuration. These two mechanisms can favorably be integrated

Flat configration Parameter dependencies Hierarchical
configration

1 2
C

B

A

D E

A=?, B=?,
C=?, D=?,
E=?

1 2 3

A=?

C=? D=? B=?

A=1 A=3 A=2

E=?

B=1

A=2

Fig. 5. Parameter dependencies and the different configuration approaches.

www.manaraa.com

Martin Becker 108

into a single tool, thus automating the customization and the instantiation of generic
components. Our D-Space-1 tool [3], for instance, facilitates the application of the
customization interface of our generic components through a graphical interface and
controls the tailoring of the generic components by calling the appropriate generators,
which accomplish the specified modifications.

4 Internals of Generic Components

From the implementers’ point of view, the descriptive elements of generic compo-
nents – especially their code – significantly differ from those of conventional ones.
Generic components comprise a set of variable implementations and generic parame-
ters to determine them. In addition to the conventional description elements, such as
code, header files, and resources, the required mechanisms to automate the tailoring
must be supplied in some way by the implementer of the generic component. A
wealth of well-known possibilities addressing different facets like code organization
and modification, customization of structure and behavior, extensibility of existing
implementations, or code generation are available for this kind of meta programming,
e.g. appropriate language constructs, pre-processors, external generators. All of these
viable implementation approaches have to somehow integrate the common and the
variable description parts that form a generic component. Before discussing the dif-
ferent tailoring techniques themselves, we want to look at the preconditions needed to
implement the tailoring facilities in the generic components.

4.1 Integration of Commonalities and Variabilities

Different techniques can be applied to tailor the description fragments that replace the
variation points in the concrete component implementation. All of these approaches
have at least two concepts in common. Firstly, the variable description parts have to
be associated with the common ones in some way. Secondly, links between the inter-
nally used generic parameters and their externally visible pendants at the customiza-
tion interface have to be established to propagate the external settings. Besides the
mere description of the variability, the following aspects thus have to be addressed in
some manner: the identification of the variation points, the association of tailoring
transformations, and the representation of the generic parameters. Although the clear
identification of the variation points might seem to be dispensable in some cases, esp.
if the same language is used to describe the common and variable parts of a generic
component, it is extremely helpful if the variability of the generic component has to
be revised or new variants have to be added. With this little overhead, tool support for
the localization of variable implementations throughout the generic component can
easily be provided. The variation points can be identified by a special markup that
obviously must not be used within the description of the common parts. For this rea-
son, the number of different markups should be kept as small as possible. The coher-
ent use of unique markups further eases the construction of tools for the identification
of the variation points within the generic component in that they do not have to be
aware of the actual techniques applied to describe the variability.

www.manaraa.com

Generic Components: A Symbiosis of Paradigms 109

Concerning the association of the tailoring transformations with the variation points,
two major methods are conceivable: inline and link. The tailoring is specified inline,
if it is described directly in the variation point. Since this results in a mixture of dif-
ferent kind of description types in most of the cases, doing so is only advisable if the
transformation is not too complex and cannot be applied elsewhere. More flexibility is
provided through an external tailoring description or a stand-alone tool that is linked
with the variation points. This link can be realized with an entry in the variation point
that is used to call the external generator, or an external identification of the variation
point that can be handled with a unique variation point identifier. In the latter case,
several variation points can be substituted with one transformation. As generic pa-
rameters typically affect multiple variation points, the required elementary transfor-
mations sometimes can be combined into one comprehensive transformation.

As stated above, the generic parameters that control the instantiation of a variation
point have to be represented in a way that allows the propagation of the respective
actual values provided at the customization interface. If a transformation is specified
inline no further representation of the generic parameters is required, since they can
be identified and replaced within the transformation descriptions if a uniform naming
scheme is used. If a transformation is associated with a variation point via a link, the
required parameters have to be specified along with the link somehow, e.g. as call
parameters of the external tool.

4.2 Tailoring Techniques

After the discussion of methods to integrate the common and variant parts of generic
components, we will now focus on the tailoring techniques applicable to realize the
variability. As the concept of generic components is primarily aimed at compile-time
tailoring, almost any text transforming or text generating technique can be deployed.
Based on our experience, the necessary tailoring can be favorably realized through a
combination of the following techniques:

Separate files – separately implemented variant parts of components are selected
by choosing the corresponding source file for compilation and linking. This is the
most simple approach; neither modifications of the descriptions nor special actions for
instantiation are necessary. The selection of the files can be accomplished through
external file management tools like RCS or CVS.

Pre-processors – scan the descriptions for particular tokens – e.g. programming
language constructs or specific pre-processor statements –, parse their semantic con-
text, and perform associated pre-defined actions. In their full extent, pre-processors
are problem-specific compilers similar to those for simple programming languages
and can be built using scanner and parser generators like lex/yacc. With special pre-
precessors other programming paradigms such as Aspect-Oriented Programming [13]
can be applied within generic components, e.g. to realize efficient implementations of
variable nonfunctional aspects. However, a great deal of variability can be realized
with the pre-processor functionality provided by the programming languages or
scripting tools like sed or perl in a very straightforward way.

Generic mechanisms of programming languages – most programming languages
and the corresponding compilers somehow support generic programming, e.g.

www.manaraa.com

Martin Becker 110

through object-orientation, templates, or compile time parameters and optimizations.
Wherever it does not contradict efficiency and comprehensibility, the deployment of
such mechanisms is a natural and well-known way to realize the required variability.
Examples are the approaches of template meta programming [20][19] and generative
programming [7] that both extensively utilize the template mechanism offered by
C++ to build variable implementations. One drawback of these mechanisms is that the
implementation of the common and the variable parts are mixed up, thus complicating
the location of the variable implementations in most cases.

Code generators – the most powerful, but also most complex way to perform the
tailoring. Higher level descriptions of the desired functionality are passed through the
generic parameters to external generators producing tailored description parts, which
afterwards replace the correspondig variation points. The use of generators is espe-
cially tempting wherever the modification of pre-built components does not appear to
be sufficient to cope with heavily varying and unforeseen requirements. One problem
with generators is that they must apply domain-specific defaults for those aspects that
are not explicitly specified by their input, mostly resulting in code that in less efficient
as manually optimized code.

4.3 A Glance at Implementations

In the following, two approaches to implement the tailoring of a generic component
are exemplarily presented. In the first example given in Fig. 6, the UNIX stream edi-
tor sed [9] is employed to tailor the get function of a generic dispatcher that supports
multi-processor environments. To allow for optimizing the source code for single-
processor envi-
ronments, refer-
ences to the pa-
rameter n have
been marked by
comments of the
form GPx_My. An
appropriate sed
script can search
for the respective
lines of source
code and apply
whatever changes
are necessary.
According to the
sed command
syntax, line 3 for
instance searches
for lines with the
mark GP2_M10,
then takes the first
occurrence of the

TCBptr Dispatcher::get(size_t n){// GP2_M10 TP:CHANGE
 TCBptr old;
 old = running[n]; // GP2_M11 TP:CHANGE
 old - >setL astCPU(n); // GP2_M13 TP:REMOVE
 // GP5_M7 TP:INSERT
 ProcContext.All.Save(old - >TCB.Register);
 return old;
}

so
ur

ce
 c

od
e

s/\(Dispatcher\.[hc][hc] - \)/\1 Single Processor - /
...
/GP2_M10/ s/\(size_t n\)//
/GP2_M11/ s/\[n\]//
s/\/\/GP2_M13//
... se

d
sc

rip
t

Code

Script

Configuration
(p1, ... , pn)

Script sed Code

Fig. 6. A small excerpt from a generic dispatcher component together
with a sed script allowing to tailor the source code.

www.manaraa.com

Generic Components: A Symbiosis of Paradigms 111

string “size_t n“, and replaces it by an empty string. Variation points and the corre-
sponding generic parameters are identified with the GPX_MXX markup. The tailor-
ing description is specified externally in the sed script and is therefore associated via
links – the markup in this case – with the variation points. It may be questioned, how
the actual values of the generic parameters are considered in this approach. Appar-
ently, these values must be propagated into the script. For this, a generic sed script is
provided along with the generic component (cf. Fig. 6). In this script, placeholders for
the generic parameters are identified. After the parameter assignment the generic
parameters in the generic sed script are replaced by the actual values. The result of
this replacement is a sed script that is finally used to tailor the component.

In the next example,
a quite different ap-
proach is presented.
Figure 7 shows an
excerpt of a generic
scheduler component.
Java is used as a meta-
programming language
to implement the cus-
tomization. The tailor-
ing is described inline
in the source code. All
lines that start with a //.
mark contain instruc-
tions of the Java meta-
program. In lines 1 – 2,
for instance, the ge-
neric parameters are
declared, and lines 5-7
show an if-block. The
meta-programming
results in a source code
description denoted as
pseudo code that can be transformed through a simple generator into an executable
Java class. Advantageous in this approach is that, although a kind of pre-processing is
used to implement the tailoring, the complete expressiveness of a full-fledged pro-
gramming language is available, and that finally an executable class is generated,
which encompasses the generic component and automates the required tailoring. Any
external generator can be called from within the pseudo code, and interactive support
for substitution parameters becomes feasible. Conceptually, this approach is closely
related with the work presented in [12] in the way that a general purpose program-
ming language is used to automate variability within components. The both ap-
proaches differ in the scope of the meta programming, since we use this technique
only to implement the generic components not to compose them. Our composition
approach can be found in [3].

//. generic parameters:
//. String schedStrategy;
[...]
SCHEDULER_C::~SCHEDULER_C() {
//. if (schedStrategy.equals("Prio")) {
 delete [] TABLE;
//. }
}
[...]

 int _iPriority = pclThread - >GetPriority ();
//. if (schedStrategy.equals("Prio")) {
//. includeFile("ReadyToRun_prio.cpp");
//. } else if (schedStrategy.equals("EDFPrio")){

 //. iEntries++; }

ps
eu

do
 c

od
e

p na-

Configuration
(p1, ... , pn)

Code GC

Fig. 7. Generic scheduler component that is transformed into an
executable generic component automating its own configuration.

void SCHEDULER_C::ReadyToRun(THREAD_P pclThread){

www.manaraa.com

Martin Becker 112

5 Conclusions

The presented concept of generic components aims at improving the reusability of
prefabricated software components by explicitly planning for specific types of fore-
seeable adaptations, and by providing mechanisms and tools to perform such adapta-
tions automatically. Generic components are implemented to be easily modified
within prescribed bounds and to expose generic parameters, which provide the exter-
nal handles for choosing and fine-tuning component properties. Tools like configura-
tion management systems, pre-processors, or full-fledged code generators then allow
to flexibly customize components for specific application environments with mini-
mized manual intervention. Although the individual techniques used to implement
and customize generic components are all well known, their explicit combination
within the concept of generic components presents a new and promising way to pur-
sue component reuse, even in the domain of embedded systems. With the ability to
flexibly adapt the implementation of reused components, conventional approaches to
improve component reusability, which typically interfere with the overall system
performance, can be avoided. The concept of generic components approximates the
advantages of manual customization and optimization, while on the other hand side-
stepping the obstacles of time-consuming and error-prone coding by reusing prefabri-
cated and tested implementations.

We have applied the presented techniques and the notion of generic components to
build a number of reusable building blocks for embedded operating systems. As soft-
ware reuse is especially beneficial – not to say: only works – within one type of archi-
tecture [10], these building blocks are designed for specific reference architectures,
respectively. For a small operating system kernel for embedded systems, for instance,
a total of 12 generic components provide the flexibility to generate more than a hun-
dred different kernel variants covering a wide spectrum of possible requirements.
Thanks to the fine-grained modifications that are applied to the generic components
during instantiation, the resulting system properties – especially concerning critical
nonfunctional aspects such as the timing behavior and the memory consumption – are
comparable to manually tailored implementations. On the downside, however, the
implementation effort for generic components is significantly higher than for conven-
tional components. According to our experience, making component implementations
generic approximately accounts for additional 50 to 100% of the development effort
as compared to conventional implementations. And for most cases, this is just half the
way: in order to further support the selection and configuration of components by
tools as presented in chapter 3 or in [3], comprehensive component descriptions are
required. Such descriptions roughly make up another 100% of the initial effort for
conventional implementations, ultimately summing up to tripled development costs
for generic components – an investment, after all, that is typically compensated by the
increased probability of reuse. To further reduce this overhead, we are currently ex-
tending our research to the questions of how to specifically support the development
of generic components. The possibilities range from ergonomic editors smartly han-
dling the variant parts of the source code, to automated detection of component inter-
dependencies and automatic deduction of properties of composed artifacts.

www.manaraa.com

Generic Components: A Symbiosis of Paradigms 113

References

1. Baum, L., Geyer, L., Molter, G., Rothkugel, S., Sturm, P.: Architecture-centric Software
Development Based on Extended Design Spaces, Proc. of the 2nd ARES Workshop (Esprit
20477), Las Palmas de Gran Canaria, February 1998

2. Baum, L.: Towards Generating Customized Run-time Platforms from Generic Components,
Proc. of the 11th Conference on Advanced Information Systems Engineering (CAISE’99),
6th DC, Heidelberg, Germany, June 1999

3. Baum, L., Becker, M., Geyer, L., Molter, G.: Mapping Requirements to Reusable Compo-
nents using Design Spaces, Proc. of the IEEE Int'l Conference on Requirements Engineering
(ICRE-2000), June 19-23, Schaumburg/Chicago, USA, 2000

4. Baum, L., Becker, M., Geyer, L., Gilbert, A., Molter, G., Tamara, V.: Supporting Compo-
nent-Based Software Development Using Domain Knowledge, 4th World Multiconference
on Systemic, Cybernetics and Informatics (SCI 2000), 2000

5. Biggerstaff, T.: The Library Scaling Problem and the Limits of Concrete Component Reuse,
Proc. of IEEE Int’l Conference on Software Reuse, November 1994

6. Coplien, J.O.: Multi-Paradigm Design for C++, Addison Wesley Publishing Company, 1998
7. Czarnecki, K., Eisenecker, U.: Components and Generative Programming, Software Engi-

neering Notes, vol. 24, no. 6, 1999
8. Czarnecki, K., Eisenecker, U.: Generative Programming, Addison-Wesley, 2000
9. Dougherty, D., Robbins, A.: sed & awk, 2nd Edition, O' Reilly, 1997
10.Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch: Why Reuse Is So Hard,

IEEE Software, 12(6), 1995
11.Jacobson, I., Griss, M., Jonsson P.: Software Reuse - Architecture, Process and Organization

for Business Success, ACM Press/Addison-Wesley, 1997
12.Kamin, S., Callahan, M., Clausen, L.: Lightweight and Generative Components I: Source-

level Components, 1st International Symposium on Generative and Component-Based
Software Engineering (GCSE'99), 1999

13.Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopez, C., Loingtier, J. M., Irwin, J.:
Aspect-Oriented Programming, European Conference on Object-Oriented Programming
(ECOOP), 1997

14.Lane, T. G.: Studying Software Architecture Through Design Spaces and Rules, Technical
Report CMU/SEI-90-TR-18, Carnegie Mellon Univ., 1990

15.Lane, T. G.: Guidance for User-Interface Architectures, in: Garlan, D., Shaw, M.: Software
Architecture – Perspectives on an Emerging Discipline, Prentice Hall, 1996

16.McIlroy, M.D.: Mass-produced software components, Software Engineering: Report on a
Conference by the NATO Science Committee, (Naur, P., Randell, B., eds.). NATO Scien-
tific Affairs Division, Brussels, 1976

17.Parnas, D.L.: On the Design and Development of Program Families, IEEE Transactions on
Software Engineering, SE-2:1-9, March 1976

18.Schäfer, W., Prieto-Diaz, R., Matsumoto, M (eds.): Software Reusability, Ellis Horwood,
New York, 1994

19.Veldhuizen, T.: Using C++ template metaprograms, C++ Report, vol. 7, no. 4, May 1995
20.Veldhuizen, T.: Template Metaprograms, http://www.cs.rpi.edu/~musser/ap/blitz/meta-

art.html , 1998

www.manaraa.com

Design and Implementation Constructs for the

Development of Flexible, Component-Oriented
Software Architectures

Michael Goedicke1, Gustaf Neumann2, and Uwe Zdun1

1 Specification of Software Systems, University of Essen, Germany
{goedicke,uzdun}@cs.uni-essen.de

2 Department of Information Systems, Vienna University of Economics, Austria
gustaf.neumann@wu-wien.ac.at

Abstract Component-orientation is an emerging paradigm that pro-
mises components that are usable as prefabricated black-boxes. But com-
ponents have the problem that they should be changeable and flexibly
adaptable to a huge number of different application contexts and to
changing requirements. We will argue, that sole parameterization – as
the key variation technique of components – is not suitable to cope with
all required change scenarios. A proper integration with multiple other
paradigms, such as object-orientation, the usage of a scripting language
as a flexible component glue, and the exploitation of high-level inter-
ception techniques can make components be easier (ex)-changeable and
adaptable. These techniques can be applied without interfering with the
component’s internals.

1 Introduction

The task of a software engineering project is to map a model of the real world
(existing or invented) onto a computational system. The complexity and diversity
of concrete real world systems can be overwhelming. This is no complexity in the
algorithmic sense, but an complexity of an overwhelming amount of details and
of particularities in the universe of discourse. By developing a model we reduce
this complexity by finding and extracting commonalities. The key instruments
of modeling are abstraction and partitioning. Analyses of commonalities let us
understand the common elements of a targeted system. The aim of any analysis
of commonalities is to group related members of a family, regardless whether the
members are components, objects, modules, functions, etc.

Orthogonal to the task of modeling commonalities (where details are re-
moved) is the task of engineering variability. It makes absolutely no sense to
create abstractions to understand a family as a whole, if we do not introduce
proper means for variation in the family members [3]. Finding commonalities
in software eases understanding and reduces the need for changes, while finding
proper variabilities enables us to use the software at all, because we have to
re-adapt the found abstractions to the concreteness of the modeled real world

G. Butler and S. Jarzabek (Eds.): GCSE 2000, LNCS 2177, pp. 114–130, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

www.manaraa.com

Constructs for Flexible, Component-Oriented Software Architectures 115

situation. Commonality and variability are competing concerns and its hard to
find a proper balance between them by approaches that (a) model the real world
from the scratch and then (b) try to reuse the common aspects in such upfront
design models. The forces in the steps (a) and (b) can normally not be well in-
tegrated. We rather propose in this work to model only the interfaces and keep
them variable. Techniques for “programmable interfaces” let us flexibly glue the
application parts together.

There are recurring ways for finding good abstractions and partitionings.
“Good” means that they provide a tenable amount of commonalities to let us
understand the problem and produce long-lasting software, but still enable us
to easily introduce (expected and unexpected) changes. Such patterns of or-
ganizing abstraction around commonalities and variations are popularly called
“paradigms”. In software engineering a paradigm is a set of rules for abstrac-
tion, partitioning, and modeling of a system. E.g., the object-oriented paradigm
structures the design/program around the data, but focuses on behavior [23]. It
allows us to introduce variations in data structures/connections and algorithm
details. Each paradigm has a key commonality and variation.

If we implement a system, we have to deal with a broad variety of paradigms.
Coplien [3] discusses the need for multi-paradigms. In fact nearly any good real
world software system is designed and implemented using multiple paradigms,
simply because nearly no complex real situation exists, that can be described
with one paradigm sufficiently. E.g., in nearly every large C++ program a mix-
ture of object-oriented, procedural, template, and various outboard paradigms
exists. Here, outboard paradigm [3] means a paradigm that is not supported by
the programming language itself, but by a used technology, like the relational
paradigm adopted from a relational database.

In the focus of this paper are language constructs and concepts for design
and implementation that overcome current problems of the component- and
object-oriented paradigms and their integration. Firstly, we will discuss these
paradigms and their current integration problems. Afterwards we present some
language concepts of the language XOTcl: Firstly we will discuss concepts which
can be mapped manually to current mainstream languages, then we will present
some interception techniques that are missing in current mainstream languages.
Finally we will generalize our approach and compare to related work.

2 Combination of Component- and Object-Oriented
Paradigm

2.1 Component-Oriented Paradigm

The very idea of component-based development is to increase productivity of
building software systems, by assembling prefabricated, widely-used components.
Components are self-contained, parameterizable building blocks with explicit
interfaces. Component-based development aims at the replaceability of compo-
nents and the transferability of components to a different context, thus enabling
component reuse.

www.manaraa.com

116 Michael Goedicke, Gustaf Neumann, and Uwe Zdun

The idea of the component-oriented key abstraction is not new. E.g., in many
large C systems self-contained components (or modules) that can be accessed via
an explicit API can be found. Component-based development, as it is proposed
today, mainly adds interface definition languages or other means to enforce that
all component accesses conform to the component interface, platform and/or
language independence, support for distribution, and accompanying services.

Current component approaches, such as component frameworks in scripting
languages, like Tcl [19], or the component models of popular middleware ap-
proaches, such as CORBA, Java Beans, or DCOM, induce mainly a black-box
component approach. Unfortunately often there are several factors for develop-
ment organizations that drive them not to adopt the component-based approach
for components developed by a third-party or even by a different in-house devel-
opment team. Often used arguments are, that internals of a black-box component
can not be changed, therefore, reaction on business process changes can become
more difficult. Generally, bugs in the component are harder to fix, because it is
hard to build a work-around for a bug, that is not located in your own code. The
organization relies on the ability and will of the component developer to fix the
bug. Moreover, using black-boxes often means that the development team looses
expertise on component’s domain.

These factors can be observed in many real world applications and they
apply not only for black-boxes, but also (to a smaller degree) to components
with available source code. The component abstraction seeks for building blocks
that can be produced and maintained separately from the systems they are used
in. Variations have to be treated separately and are mainly introduced by means
of parameterization. The key problem of component-based software engineering
is: On the one hand, components aim at extracting the commonalities to a level,
where we can use them as prefabricated building blocks. On the other hand it is
hard to maintain and to cope with changes in a piece of software without access
to internals. Since parameters are the main variation technique of black-box
components, the changeable parameters have to be foreseen by the component
developer. But in reality often the requirement changes are not foreseeable at
component development time.

2.2 Object-Orientation and Components

Object-orientation is a paradigm sharing properties with component-based ap-
proaches. Many component-based approaches are implemented using objects.
Object-orientation arranges structures around the commonalities of data, but
focuses on behavior. Traditional object-oriented programming and design maps
entities of the modeled real world to a single programming language/design
construct: the class. Object oriented design expresses computational artifacts
through a mapping onto several classes and their relationships. In most object-
oriented approaches, these relationships are association/aggregation (most often
both are expressed through the same language construct), and inheritance or
extension.

www.manaraa.com

Constructs for Flexible, Component-Oriented Software Architectures 117

Object-orientation promises separation of the involved orthogonal concerns
through encapsulation and class inheritance. The abstraction into general parts
with inheritance or delegation in object-based system should help us to concen-
trate on common and special properties at different times. These abstractions
also promise to gain modularity and to anticipate changes by designing general
modules, that can be specialized in different ways and that support incremental
extensions.

These promises were only partially achieved by traditional object-oriented
approaches. Studies of the amount of reuse gained through object-orientation
indicate that reuse is much smaller than expected in its early promises. E.g.,
Ousterhout [19] points out on basis of empirical evidence that the reuse of com-
ponents – as they are used in scripting languages – is by far higher, than the
reuse gained solely by object-orientation. We believe a main reason for this di-
vergence is that large object-oriented frameworks tend to require an intimate
knowledge of the framework’s internals.

The component-oriented key abstraction of consequently exploiting parame-
terizable black-boxes is more suitable for reuse. But when taking a closer look at
the success factors of scripting languages, one can observe that they combine the
components with a highly-flexible glue language. Object-orientation especially
helps us to understand structural complexity and to make it explicit by architec-
tural means. These architectural means can be extremely valuable in complex
design situation in the glue language (see [18]), because a relatively small glue-
ing application can become very expressible and complex through the number of
involved components. And object-oriented language constructs can also be valu-
able in the internal design of the self-contained components. Our approach relies
on the two-level concept of scripting languages, like Tcl. We distinguish into
reusable, self-contained components, mostly written in a system language, and
a high-level, object-oriented scripting language that combines these components
flexibly.

Complex design problems are a focus of object-oriented approaches, but a
weak point of component combination with a scripting language, like Tcl. Object-
oriented design patterns capture the practically successful solutions of the field
of object-orientation. Our research on language support for design pattern, as
for instance in [14], has shown that pattern variations cannot be described solely
through parameterization. Reusable pattern implementation variants have to
be fitted to the current context, especially when patterns are used in the hot
spots [20] of software systems. These parts of the application – where an elegant
and sufficient solution requires variabilities beyond pure parameterizations – are
the parts that are hard to cover with the component-oriented abstraction, since
its key variability is parameterization. The combination of the two paradigms
with high-level design/implementation language functionalities lets the object-
oriented constructs cover the weak points of the black-box component approach
and vice versa.

www.manaraa.com

118 Michael Goedicke, Gustaf Neumann, and Uwe Zdun

3 Components and Component Configuration in XOTcl

Extended Object Tcl (XOTcl) [18] (pronounced exotickle) is an object-oriented
extension of the language Tcl. Scripting languages gain flexibility through lan-
guage support for dynamic extensibility, read/write introspection, and automatic
type conversion. The inherent property of scripting languages such as Tcl is
that they are designed as two-level languages, consisting of components written
in efficient and statically typed languages, like C or C++, and of scripts for
component glueing.

Our assumption is that just “glueing” is not enough. XOTcl enhances Tcl

with language constructs giving architectural support, better implementation
variants, and language support for design patterns, and explicit support for com-
position/decomposition. All object-oriented constructs are fully introspectable
and all relationships are dynamically changeable. XOTcl offers a set of basic
constructs, which are singular objects, classes, meta-classes, nested classes, and
language support for dynamic aggregation structures. Furthermore, it offers two
message interception techniques per-object mixin and filter, to support changes,
adaptations, and decorations of message calls.

In XOTcl a component is seen as any assembly of several structures, like
objects, classes, procedures, functions, etc., to a self-contained entity. Compo-
nents are conveniently packed into packages that can be loaded dynamically. A
component can also consist of a C or C++ extension of Tcl. Each component
has to declare its name and optional version information with Tcl’s package

provide with the following syntax:

package provide componentName ?version?

The system automatically builds up a component database. With package require

an XOTcl program can load a component dynamically with a name and optional
version restrictions at arbitrary times. package require has nearly the same syn-
tax:

package require componentName ?version?

Components expose an explicit interface that can be used by other programs
without interfering with the components internals. But still we have to inte-
grate the components with the application and make the component internals
adaptable and dynamically fit-able to a changing application context.

3.1 Component Wrapping

Component wrappers can wrap black-box components written in various lan-
guages and structured with multiple paradigms. The component wrappers are
object-oriented Wrapper Facades [21] that shield the components from direct
access (see Figure 1). Note, that often a set of interacting component wrappers
has to be used to wrap a complex component properly. Above the component
wrapper layer a set of implementation objects define the hot spots of the de-
sign. All objects (including the component wrappers) can exploit the dynamic

www.manaraa.com

Constructs for Flexible, Component-Oriented Software Architectures 119

and introspective language functionalities of XOTcl. Since a black-box compo-
nent is never accessed directly, but always with the indirection of the component
wrapper, we gain a central place, that is a proxy or placeholder for a component.
The component wrapper is a white-box for the development team of the applica-
tion. Here, changes can be applied centrally and adaptations can be introduced
without affecting the components’ internals.

XOTcl

Component Wrappers

C++
Component Relational

Component
...

...

C
Component

DBMS
Wrapper

Implementation Objects

XOTcl
Component

Figure 1. Integration of Components and Objects through Component Wrap-
pers.

Generally each component wrapper is implemented with an abstract interface
and a concrete component wrapper implementation (see Figure 2). Clients use

ConcreteComponentWrapper1

AbstractComponentWrapper

ConcreteComponentWrapper2

Client potentially
decorations

ComponentImpl2

potentially
adaptations

ComponentImpl1

Explicit import
from component

Explicit export
through
Tcl commands

potentially
adaptations

Figure 2. Class-Based Component Wrapper Interface.

the components as Strategies [4] to make components easily exchangeable by
providing a new concrete component wrapper and by dynamically changing to a
new Strategy. The concrete component wrappers forward the received messages
as Wrapper Facades [21] to the components that implement the functionality. At
the connection between client and component wrapper we can easily enhance the
functionality of the component with Decorators [4]. At the connection between
component wrapper and component we can use Adapters [4], e.g. to perform
interface adaptations.

www.manaraa.com

120 Michael Goedicke, Gustaf Neumann, and Uwe Zdun

3.2 Export/Import Component Configuration

The implementation of the component’s functionality (e.g. in C or C++) is inte-
grated into XOTcl with Tcl commands (see Figure 3). A component explicitly
defines its export by explicitly defining a set of Tcl commands (function names
with argument lists). These commands can be mapped onto one (or more) wrap-
per objects, that configure the component usage and adapt the Tcl Commands to
an object-oriented interface. The component wrapper explicitly declares which
of the exported methods are the import of this component usage. This way the
component’s client defines the required interface that an implementing compo-
nent has to conform to. The component implementation can be replaced by any
other implementation that conforms to the required interface. Finally, the actual
implementation objects, which are using the component, call the methods of the
component wrapper.

Component
Wrapper

C Library

cFunction1

cFunction2

cFunction3
...

tclCommand1

tclCommand2
...

C Part

xotclMethod1

xotclMethod2
...

C-Tcl Wrapper

Basic Component
Functionality

Export Import Component Client
(Usage)

Implementation
Objects

xotclMethodX

xotclMethodY
...

XOTcl Part

Import
Interface

Base Language
Component

Export
Interface

OO
Implementation

Object System Layer

A
d

ap
tatio

n

In
terface D

efin
itio

n

E
xp

o
rt/Im

p
o

rt C
o

n
fig

u
ratio

n

X
O

T
cl

C
om

ponent
C

onfiguration

O
bject S

ystem
 Layer

C
om

ponent
C

onfiguration

Figure 3. Three-Level Component Configuration with Explicit Export/Import.

The implementation objects can be used to build an application or a new
component. If a new component is built from existing components, it can export
an interface through a component wrapper consisting of XOTcl methods. But,
since any Tcl program can be embedded in a C program, a new component can
also export C functions (which can be used by any C program).

The component concept relies at runtime on the concept of component con-
figuration [5]. The first configuration step maps a C library component with an
interface design into the scripting language. Then this functionality is imported
and adapted by the component wrapper. Finally, the implementation objects
use the adapted import in their application framework. Each configuration step
allows us to actualize the configurations with different implementations that
conform to the interfaces. The integration of C components is presented in the
upper half of Figure 3.

The general technique of applying an Object System Layer to a base language
and to implement the components with an object-oriented implementation is
presented below. This technique is used in various languages and applications
and is documented as the Object System Layer architectural pattern [12].

www.manaraa.com

Constructs for Flexible, Component-Oriented Software Architectures 121

Component configuration – as used in this work – is the runtime technique of
combining components. In XOTcl each component configuration can be changed
dynamically at arbitrary times. The component import interfaces can be dynam-
ically fitted to the new context. In order to keep track with this runtime flexibility
an important functionality of the XOTcl language is introspection. It allows us
to query the import interface for method names, argument list, and method im-
plementations. The currently configured components can be queried to trace the
components, their configuration, and the used interfaces at runtime. Runtime
inspection tools can be written with a few lines of code.

4 Interception Techniques for Flexible Component
Wrapping

The techniques discussed so far can (mainly) be implemented in any object-
oriented design/programming language. The only difference of using XOTcl is
that XOTcl language supports the discussed component concept already, i.e.,
it offers dynamic package loading mechanisms, language support for dynamic
aggregation, dynamics and introspection in all language constructs, etc. In other
languages we have to program the concept implementations by hand. But im-
plementing flexible component wrappers solely with class constructs has several
disadvantages:

– Transparency: The client should use the abstract interface without knowl-
edge of concrete implementation details. The component wrapper should not
appear to be scattered over several implementation objects.

– Concerns that cross-cut the component wrapper hierarchy: Often a complex
class hierarchy is necessary to implement component wrappers sufficiently.
E.g., most widget sets offer widgets as C or C++ components. In order
to compose compound widgets out of simpler widgets, we may need object
hierarchies as in the Composite pattern [4]. Concerns that are of a broad
structural size and that cross-cut the hierarchy, such as painting of the whole
compound widget, conventionally have to be programmed by hand.

– Object-specific component wrapper extensions or adaptations: Often adapta-
tions have not to be performed for all objects of a certain component wrapper
type, but only for one object. We should be able to object-specifically en-
hance components, without sacrificing the transparency. The intrinsic com-
ponent wrapper implementation and the implementation of extension/adap-
tation parts should remain decomposed.

– Coupling of Component and Wrapper: Component and component wrapper
should appear as one runtime entity to clients, but they should be decom-
posed in the implementation.

– Dynamics in Component Loading: Components should be dynamically load-
able, replaceable, and removable.

– Runtime Traceability: Components are loaded (possibly dynamically) into
the system. To know which components are already loaded, the connections
between wrapper and component should be traceable at runtime.

www.manaraa.com

122 Michael Goedicke, Gustaf Neumann, and Uwe Zdun

In this section we will briefly explain two interception techniques of XOTcl, that
overcome these problems by flexible adaptation of the component wrapper calls
to the concrete implementation. Both are transparent for the client. The per-
object mixin implements concerns that are object-specific extensions, while the
filter implements concerns that cross-cut class hierarchies. Filters and per-object
mixins form runtime traceable entities with the intercepted objects at runtime,
but are decomposed in the implementation.

4.1 Per-Object Mixins for Object-Specific Component Wrapper
Extensions

A per-object mixin [13] is a language construct, that enhances a single ob-
ject with a class that is object-specifically mixed into the precedence order
of an object in front of the precedence order implied by the class hierarchy.
Through object-specific, transparent, and dynamic interception of the messages
that should reach the object, object-specific pattern variants [15] and object-
specific roles [13] can be implemented conveniently. Per-object mixins allow us
to handle orthogonal aspects not only through multiple inheritance, but since
they are themselves classes and use class inheritance, they co-exist with the
object’s heritage order.

LoggedReq

method
invocation

next

http1

instance-of

next

. . .

per-object
mixin

Request

HTTP FTP

HTTP-Component FTP-Component

AccessControl

Access Control
Client Implementation

Figure 4. Request Logging/Access Control with Per-Object Mixins.

In Figure 4 we can see an example of a per-object mixin. An abstract class
Request has two subclasses, one handling HTTP requests and one for FTP requests.
The class definitions may look like:
Class Request ;# Abstract class definition

Request abstract instproc open {} ;# Abstract method

...

Class HTTP -superclass Request ;# HTTP class definition

HTTP instproc open {} { ;# Method definition

... ;# Method forwards to HTTP

} component

Class FTP -superclass Request ;# FTP class definition

...

HTTP and FTP objects are Wrapper Facades [21] to components that implement
the actual requests as black-boxes. Orthogonal to the tasks of a requests are the

www.manaraa.com

Constructs for Flexible, Component-Oriented Software Architectures 123

tasks of request logging, which can operate on both mentioned request types.
In many cases only certain specified request objects should be logged, as in the
example http1.

We do not want to interfere with the internals of the components that im-
plement the requests in order to gain request logging. Therefore, a solution
with single or multiple inheritance would not suffice, because it would either
make all requests logged or create unnecessary intersection classes [13], like
LoggedHttpRequest and LoggedFtpRequest. A solution with a reference from a
logging object, as in the Decorator pattern [4], would require the client to main-
tain a reference to the perhaps volatile logging object and, therefore, it would be
not transparent to the client. A solution with a reference to a logging object, as
in the Strategy pattern [4], would not be transparent to the request object and
unnecessarily interfere with the internals of the component wrapper. Both solu-
tions suffer from the fact that – from the viewpoint of the client – one conceptual
entity is split up into two runtime entities.

The solution with the per-object mixin, as in Figure 4, does not suffer from
any of these problems. It attaches the role of being a logged request and an
access control mechanism as a second orthogonal aspect object-specifically to
the request object, either in Decorator or Strategy style (as required). The ac-
cess control mechanism is actually performed in an imported component, while
the rather simple task of logging is handled by the mixin class. The per-object
mixin is transparent to client and request object. The logged request appears
as one conceptual entity to the client. There is only one object http1 that can
be accessed and it always has the same intrinsic class HTTP. But still logging
and request tasks are decomposed into different classes and can be dynamically
connected/disconnected. Per-object mixins can be attached in chains and spe-
cialized through inheritance. The per-object mixin solution may look like:

HTTP http1 ;# Instantiation of http1 object

Class LoggedReq ;# Logged request class definition

LoggedReq instproc open {} {

logging implementation

next

}

...

Class AccessControl

...

http1 mixin {AccessControl LoggedReq} ;# Mixin registration

LoggedReq and AccessControl are ordinary classes of XOTcl. As an example
method, we define a method open for LoggedReq that logs all open calls and
forwards the message afterwards with the next language primitive to the next
mixin or the actual method implementation. We dynamically register the mixin
classes for http1.

www.manaraa.com

124 Michael Goedicke, Gustaf Neumann, and Uwe Zdun

4.2 Filters for Cross-Cutting of Class Hierarchies

A second interception technique, called filter [14], is able to operate on a class
hierarchy, instead of a single object (as the per-object mixins). A filter is a
special instance method registered for a class C. Every time an object of class C
or one of its sub-classes receives a message, the filter is invoked automatically.
A prominent concern for usage of filters is to implement larger artifacts of the
modeled world, like object-oriented design patterns, as instantiable entities of the
programming language. In [14] we show how to express such concerns through a
meta-class with a filter. The filter operates on all classes derived from the meta-
class. Filters can be defined once and can then be registered dynamically. One
can introspect the filters that are registered for a class. All filter invocations are
transparent for clients.

As an example for filters, we present the implementation of a Composite pat-
tern [4] variant in a reusable component. The context of the composite pattern
is to build up an object tree structure and to derive a set of classes from an
abstract component type. E.g., a composite widget component Canvas can ag-
gregate other widgets. This way we can build up compound widgets. All widgets
confirm to the same abstract widget component interface. A recurring problem
of such structures is that leaf object, like button widgets, are not allowed to
aggregate other objects. The solution to the problem in a purely class-based
environment is, that only aggregating composite objects contain an aggrega-
tion relationship. Leaf objects, like buttons in the widget component example,
have no children. An intrinsic property of composite hierarchies is that certain
operations on the root component, as in the widget example a painting of the
compound widget, have to be propagated through the object tree. Composite
objects forward these operations to all their children, while leaf objects only
execute the operation, but do not forward.

There are several problems that can be identified with the class-based im-
plementation of the pattern. Concerns that cross-cut the composite hierarchy,
like the forwarding of messages or the life-time responsibility of the whole for
its parts (in the widget example: if a top-level widget is destroyed, all the con-
stituent components have to be destroyed), are not expressed properly, since
their semantics are not handled automatically. There is a certain implementa-
tion overhead, e.g. due to unnecessary forwarding of messages. The pattern as a
conceptual entity of our design is neither traceable in the program code nor at
runtime, but it is scattered across several implementation constructs. This vari-
ant of pattern implementation can hardly be reused, when the implementation
language lacks proper (dynamic) means to fit a general variant implementation
to a new context.

The implementation with a filter, a meta-class, and dynamic object aggrega-
tion, as in Figure 5, does not suffer from these problems. The filter is stored in
a dynamically loadable component that contains a meta-class with a filter. The
filter implements the reusable pattern implementation variant. Classes, like the
widget component, that are superclasses of composite types are of the Composite

meta-class type. Automatically they get the filter registered. The filter acts on

www.manaraa.com

Constructs for Flexible, Component-Oriented Software Architectures 125

WidgetComponent

Button Canvas

Compositemeta-class
compositeFilter

compositeFilter

WidgetInterface

Canvas
Component

Button
Component

Widget Set
Library

Figure 5. Composite Pattern with Filters/Dynamic Object Aggregations.

the whole composite hierarchy and implements the concerns that cross-cut the
hierarchy. Here, the forwarding of composite messages on a set of registered op-
erations, like paint, is such a concern. The filter in the meta-class is transparent
to clients. The compound widget appears as every other ordinary widget. The
dynamic object aggregation language construct automatically handles the aggre-
gation issues, like assurance of the tree structure and the life time responsibility
of wholes for their parts.

The class definition of the Composite meta-class firstly has to define the meta-
class. The composite filter is an ordinary instance method that determines the
called method with an introspection option. It calls the message on all children
with a loop and then on the current object. The component may look like:
package provide Composite 0.8

...

Class Composite -superclass Class ;# Meta-class definition

Composite instproc compositeFilter args { ;# Composite filter method

...

set r [[self] info calledproc] ;# Determine called operation

foreach child [[self] info children] { ;# Loop over all children

objects

eval $child $r $args ;# Forward message to children

}

return [next] ;# Call message on

‘self’-object

}

We can load the Composite implementation from a component with package

require. Afterwards we define the class hierarchy. WidgetComponent is defined by
the meta-class Composite and automatically handles the forwarding of messages
for all sub-classes transparently.
package require Composite

...

Composite WidgetComponent -superclass WidgetInterface

Class Button -superclass WidgetComponent

Class Canvas -superclass WidgetComponent

www.manaraa.com

126 Michael Goedicke, Gustaf Neumann, and Uwe Zdun

5 Components for Development of Flexible Software
Architectures

The outcome of software development is a piece of software, a sustainable intel-
lectual structure, which manifests the results of the design. Often it is handed
over from the development team to the maintainers. The ability to modify or
to understand the software especially for a person that was not involved in the
development details, depends on the software architecture.

There are several properties that we expect from a “good” software architec-
ture: It should be flexible, evolvable, understandable, predictable and maintain-
able. We expect the architectures to offer a significant amount of code reuse to
speed up the development process and to achieve more reliable software systems.
Certainly, the systems should be highly efficient. In summary we can make the
following assessments on the architectural impact of the approach discussed in
this paper:

– Heterogeneous, Multi-Paradigm Black-Box Components : Black-box compo-
nents from various languages, like Tcl, XOTcl, C, or C++, are reused. The
components are implemented with the most suitable paradigms. Unfortu-
nately flexibility and evolvability of our software architectures suffer from
our inability to change or react on problems of the components internals.
In this paper we have discussed two approaches – scripting and high-level
object-orientation – to overcome these problems.

– Object-Oriented Scripting Language as a Component Glue: Scripting lan-
guages combine components flexibly, by means of a highly flexible, intro-
spective, and dynamic glueing language. But scripting languages are not
very suitable to express the complexity of large application frameworks (see
[18,14]). Their original language design aims at smaller applications, partly
because of runtime efficiency. However, time critical parts can always be put
into components written in more efficient languages, like C. Still complex
scripting applications, like several compound widgets in TK, were very slow
in the early days of Tcl/TK. But nowadays CPU speed allows us to build
very complex scripting applications without a reasonable speed penalty.
In contrast, the combination with object-orientation gives us architectural
support for composition/decomposition. The hot spots of the application,
which are expectable changing parts, are kept in the high-level object-orien-
ted language with its dynamic and introspective language means. Design
experience of the object-oriented community with complexity of applications
and with introducing flexibility in framework hot spots, helps us to make the
component wrappers easily (ex-)changeable and evolvable.

– Component Wrappers: Object-oriented component wrappers integrate the
components into the scripting language (if necessary). With the set of com-
ponent wrappers a component’s client explicitly defines its import from the
component. In turn, the component explicitly defines its export through the
Tcl wrapper. In a three-level process of configuration we actualize the inter-
faces with concrete implementations. These can be exchanged against other

www.manaraa.com

Constructs for Flexible, Component-Oriented Software Architectures 127

implementations transparently, what leverages evolvability and flexibility of
our architectures. The implied indirection fosters understandability, since
we can understand components and clients independently. The component
wrappers are introspectable white-boxes to the application. Often changes
in the component wrapper – without interference with the component’s in-
ternals – are sufficient to cope with new requirements for a component.

– Interception Techniques: Object-oriented interception techniques, like filters
and per-object mixins, enable us to deal with concerns that are hard to ex-
press with current object-oriented constructs. They are especially valuable
on the component wrapper, since they allow us to transparently and dy-
namically introduce multiple views onto a component implementation (at
runtime).

To back up the results in this work we have provided two case studies of
systems build with the techniques described in this paper. In [16] we describe
our web server implementation in XOTcl. We have compared efficiency with the
pure C-based Apache web server. In the worst case our implementation was 25%
slower than Apache, in some cases, our implementation was faster. In [17] we
present a high-level framework for XML/RDF text parsing and interpretation.
Again we have performed speed comparisons with implementations in Java and
C. The Java based implementation was 2-4 times slower than our implementa-
tion in the scripting language (using off-the shelf C components), the pure C
implementation was only 1.5-3.5 times faster than the scripting implementation.

6 Related Work

In [22] the (mainly black-box) component models of current standards, like
CORBA, COM, or Java Beans are discussed. These approaches offer the bene-
fits of black-box component reuse, but have problems, when the internals of a
component have to be changed or adapted. Currently none offers an integrated
concept for component reuse and adaptation, that solves all the problems raised
in this paper, but all approaches have extension in this direction.

Java Beans implement limited dynamic loading and reflection abilities, but
not all interesting data can be introspected (e.g., the important information on
caller/callee of a call can not be retrieved automatically). Java Beans offer a dis-
tinct component model. But Java Beans offer only the Java Native Interface for
integration of components written in other programming languages. Java does
not support powerful language means for configuration/adaptation of compo-
nents.

In [7] an interception system for COM objects that can intercept object
instantiations and inter-object calls is presented. COM is a binary object model
and the approach relies on direct manipulation of the function pointers that call
the methods. In contrast to the approaches in this paper the approach is a very
low-level approach and does not support suitable introspection mechanisms.

Orbix filters [8] (and similar techniques in other ORBs) implement limited
interception abilities. They do only operate on distributed method calls and do

www.manaraa.com

128 Michael Goedicke, Gustaf Neumann, and Uwe Zdun

not offer sophisticated introspection techniques. A more general form of such
abstractions of the message passing mechanisms in distributed systems are com-
position filters [1]. Abstract communication types are used as first-class objects
that represent abstractions over the interaction of objects. They encapsulate
and enforce invariant behavior in object communications, can achieve the reduc-
tion of complexity of object interactions, and can achieve reuseability of object
interaction forms.

The new CORBA 3.0 standard specifies a component model that is based
in part on the Java EJB component concepts, but goes beyond that, by pro-
viding the component model to work with various languages. The new CORBA
standard includes a scripting language specification, which is a framework to
integrate scripting languages with a CORBA mapping. Interestingly, the goals
for primary applications of the scripting language specification are the same
issues, for which we have given architectural language support in this work,
i.e., customizations of components, legacy wrapping, a service-based callback
architecture, and flexible component glueing. It is likely that XOTcl and the
techniques discussed in this work would ease it to reach these goals (though the
specification is still in an early state).

A role, as in [11], is used to express the combination with extrinsic proper-
ties that can be dynamically taken/abandoned. The approach does not define a
comprehensive read/write introspection mechanism. It does not provide an ab-
straction at a broader structural size, as the filter that applies a role on a whole
class hierarchy.

Aspect-oriented programming [10] is a programming technique for decompos-
ing concerns into aspects, that have to be coordinated with other concerns across
component boundaries. Aspects cross-cut component boundaries, while compo-
nents are characterized by being cleanly encapsulated. An “aspect weaver” (a
kind of a compiler) weaves components and aspects together. The approach does
only introduce limited (dynamic) changeability through re-weaving, but it can
express concerns that cross-cut several components properly. In contrast to our
approach, aspect-orientation is not inherently a black-box approach, but requires
knowledge of the component’s internals to build useful aspects.

Meta-object protocols, as in [9], divide a system into meta-level and base-
level. Meta-level objects impose behavior over base-level objects. Generally meta-
object protocols are low-level, but powerful; they can achieve reflection, dynam-
ics, and transparency. Our approach provides meta-classes with similar abilities,
but most often the interceptors are more powerful, easier composable, and pro-
vide more introspection facilities.

Bosch proposes in [2] a component adaption technique based on layers, which
is similar to the presented interceptors: it is also transparent, composable and
reusable, but it is not introspective, not dynamic and a pure black-box approach.
Layers are given in delegating compiler objects, that are statically defined be-
fore compilation time. This approach can be hardly used for expressing runtime
dynamics in component composition, since changes in layer definitions require
recompilations.

www.manaraa.com

Constructs for Flexible, Component-Oriented Software Architectures 129

Subject-oriented programming models [6] offer different views for a client
onto a concern. Classes can be composed with composition rules. In contrast to
composition with interceptors, it does not provide introspective and dynamical
runtime composition, but only by a tool called subject compositor. Subject-
orientation (and subsequent approaches) address composition of system parts
with extensions and multiple views, thus it helps to overcome some of the prob-
lems of (descriptive) component composition. Central runtime problems of com-
bining components, like adapting components without interference with compo-
nent internals at different granularities, component introspection/runtime trace-
ability, or dynamic component loading/unloading are nearly not addressed.

7 Conclusion

We have addressed the issue that software architectures should be build with
reusable (off-the-shelf) black-box components, but should also exploit the char-
acteristics of white-box object-oriented frameworks regarding evolvability and
flexibility. We have presented a practical approach that integrates such black-
boxes, written in several languages. An object-oriented scripting language serves
as a component glue with explicit export/import interfaces and as a central place
to introduce changes into the hot spots of the architecture. To overcome several
problems of object-orientation, the language offers interception techniques, that
are valuable for component composition and adaptation. All presented tech-
niques can be used in various other languages through explicit programming
by hand. Nevertheless, (runtime) language support for introspection, dynam-
ics, component composition/decomposition, and interception techniques is use-
ful, since it leads to shorter, more elegant, and less error-prone solutions. Since
XOTcl is itself a C library it can be embedded in any C or C++ application as
a distinct component glueing language.
XOTcl can be downloaded from http://www.xotcl.org.

References

1. M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting
object interactions using composition filters. In R. Guerraoui, O. Nierstrasz, and
M. Riveill, editors, Object-Based Distributed Processing, pages 152–184. LCNS 791,
Springer-Verlag, 1993.

2. J. Bosch. Superimposition: A component adaptation technique. Information and
Software Technology, 41, 1999.

3. J. O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1998.
4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.
5. M. Goedicke, J. Cramer, W. Fey, and M. Gros̈e-Rhode. Towards a formally based

component description language a foundation for reuse. Structured Programming,
12(2), 1991.

6. W. Harrison and H. Ossher. Subject-oriented programming - a critique of pure
objects. In Proceedings of Conference on Object-Oriented Programming Systems,
Languages (OOPSLA), 1993.

www.manaraa.com

130 Michael Goedicke, Gustaf Neumann, and Uwe Zdun

7. G. C. Hunt and M. L. Scott. Intercepting and insturmenting COM applications.
In Proceedings of COOTS’99, 5th Conference on Object-Oriented Technologies and
Systems, San Diego, California, USA, May 1999.

8. IONA Technologies Ltd. The orbix architecture, August 1993.
9. G. Kiczales, J. des Rivieres, and D.G. Bobrow. The Art of the Metaobject Protocol.

MIT Press, 1991.
10. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. M. Loingtier,

and J. Irwin. Aspect-oriented programming. In Proceedings of ECOOP’97, Finn-
land, June 1997. LCNS 1241, Springer-Verlag.

11. B. B. Kristensen and K. Østerbye. Roles: Conceptual abstraction theory & prac-
tical language issues. Theory and Practice of Object Systems, 2:143–160, 1996.

12. M.Goedicke, G. Neumann, and U. Zdun. Object system layer. Accepted for pub-
lication in EuroPlop 2000, 2000.

13. G. Neumann and U. Zdun. Enhancing object-based system composition through
per-object mixins. In Proceedings of Asia-Pacific Software Engineering Conference
(APSEC), Takamatsu, Japan, December 1999.

14. G. Neumann and U. Zdun. Filters as a language support for design patterns in
object-oriented scripting languages. In Proceedings of COOTS’99, 5th Conference
on Object-Oriented Technologies and Systems, San Diego, California, USA, May
1999.

15. G. Neumann and U. Zdun. Implementing object-specific design patterns using per-
object mixins. In Proceedings of NOSA‘99, Second Nordic Workshop on Software
Architecture, Ronneby, Sweden, August 1999.

16. G. Neumann and U. Zdun. High-level design and architecture of an http-based
infrastructure for web applications. Accepted for publication in the World Wide
Web Journal 3(1), 2000.

17. G. Neumann and U. Zdun. Highly flexible design and implementation of an xml
and rdf parser/interpreter. to appear, 2000.

18. G. Neumann and U. Zdun. XOTcl, an object-oriented scripting language. In
Proceedings of Tcl2k: The 7th USENIX Tcl/Tk Conference, Austin, Texas, USA,
February 2000.

19. J. K. Ousterhout. Scripting: Higher level programming for the 21st century. IEEE
Computer, 31, March 1998.

20. W. Pree. Design Patterns for Object-Oriented Software Development. ACM Press
Books. Addison-Wesley, 1995.

21. D. C. Schmidt. Wrapper facade: A structural pattern for encapsulating functions
within classes. C++ Report, SIGS, 11(2), February 1999.

22. C. Szyperski. Component Software – Beyond Object-Oriented Programming. ACM
Press Books. Addison-Wesley, 1997.

23. P. Wegner. Learning the language. Byte, 14:245–253, March 1989.

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

G. Butler and S. Jarzabek (Eds.): GCSE 2000, LNCS 2177, pp. 147-161, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Product Instantiation in Software Product Lines:
A Case Study

Jan Bosch1

University of Groningen
Department of Computing Science
P.O. Box 800, 9700 AV Groningen

 Jan.Bosch@cs.rug.nl
http://www.cs.rug.nl/~bosch

Mattias Högström

Blekinge Institute of Technology
Department of Software Engineering and

Computer Science
S-372 25 Ronneby, Sweden

Abstract. Product instantiation is one of the less frequently studied activities in
the domain of software product lines. In this paper, we present the results of a
case study at Axis Communication AB on product instantiation in an industrial
product line, i.e. five problems and three issues. The problems are concerned
the insufficiency of functional commonality, features spanning multiple
components, the exclusion of unwanted features, the evolution of product line
components and the handling of initialization code. The issues discuss
architectural compliance versus product instantiation effort, quick-fixes versus
properly engineered extensions and component instantiation support versus
product instantiation effort. The identified problems and issues are based on the
case study, but have been generalized to apply to a wider context.

1. Introduction

The development and evolution of software is expensive and complex, causing few
software development and maintenance projects to deliver on schedule, within budget
and at the required quality level. For decades, the reuse of existing software has been
proposed as the most promising approach to attack these problems. In the earliest
proposals, software components represented functions that could be reused [11],
whereas later proposals suggested object-oriented programming, i.e. the use of classes
and inheritance, to achieve reuse of software [8]. During the second half of the 1980s,
it was identified that for software reuse to be beneficial, the components need to be of
larger granularity than functions and classes, which lead to the introduction of object-
oriented frameworks [8,6] and, later, component-oriented programming [14].
All the approaches discussed above aimed at achieving community-wide reuse of
software assets. Although successful attempts exist, in general one has to conclude
that the promised benefits of software reuse have not been achieved. One explanation
is that the software reuse community tried to overcome two dimensions of complexity

1 This research was performed while the first author was at the Blekinge Institute of
Technology, Sweden.

www.manaraa.com

Jan Bosch and Mattias Högström148

at once, i.e. reuse between software products and reuse over organizational
boundaries. In response to this, the notion of software product lines, aiming at reuse
between software products, but within an organization has achieved considerable
amounts of attention during recent years, e.g. [9, 7, 16, 4].
In this paper we focus on the instantiation of products within a software product line.
In particular, we present the problems and issues that we identified in a case study
that we performed at Axis Communications AB. Since product line based
development differs significantly from the traditional approach to developing
software, it is reasonable to assume that new problems or new variants of known
problems exist. Although we earlier have published case studies discussing software
product lines in general [3], product line components [2] and product evolution [15],
to the best of our knowledge, few research results are available that address product
instantiation in software product lines.
The primary goal of our case study was to identify the problems and issues associated
with the instantiation of software products in software product lines. The reasons for
choosing Axis Communications for the case study are that we have had cooperation
with this company for several years, it has a few well-established software product
lines that have been operational for several years and the company employs a
philosophy of openness. Finally, we believe that the company is representative for
‘normal’ software development organizations, e.g. development departments of 10 to
100 engineers and developing products sold to industry or consumers.
The most appropriate method to achieve our goals with this case study, we concluded,
was through detailed analysis of a number of software products, discussions with
system architects and studying component and product documentation. For practical
reasons, we chose to narrow the scope of the study to products within the same
product family. Although the analyzed products belong to the same product family,
the variety of configurations concerning both software and hardware gives rise to
many interesting problems that can be found in other product families as well.
The contribution of the paper, we believe, is that it identifies a set of important
problems and issues associated with the instantiation of products within the context of
software product lines. Awareness of these problems and issues allows practitioners
to minimize the negative effects and researchers may use these topics in their
research.
The remainder of this paper is organized as follows. In the next section, we present
the case study company and the software product line that is the focus of our case
study. Section 3 discusses the process of product instantiation within the product line.
In section 4, the problems that we identified are discussed, whereas section 5
discusses the issues that we recognized. Related work and our conclusions are
presented in section 6.

2. Axis Communication AB

Axis Communication was incorporated in 1984 and developed a printer server
product that allowed IBM mainframes to print on non-IBM printers. The first product
was a major success that established the base of the company. In 1987, the company

www.manaraa.com

Product Instantiation in Software Product Lines 149

developed the first version of its proprietary RISC CPU that allowed for better
performance and cost-efficiency than standard processors for their data-
communication oriented products. Today, the company develops and introduces new
products on a regular basis. Since the beginning of the ‘90s, object-oriented
frameworks were introduced into the company, and since then, a base of reusable
assets is maintained, from which most products are developed.
Axis develops IBM-specific and general printer servers, CD-ROM and storage
servers, network cameras and scanner servers. Especially the latter three product
types, i.e. the network devices, are developed and evolved using a common product
line architecture and reusable components. In figure 1, an overview of the product-
line and the product architectures is shown. The organization is more complicated
than the standard case, with one product-line architecture (PLA) and several products
below this product-line. In the Axis case, the software product line is hierarchically
organized, i.e. there is a top product-line architecture and the product-group
architectures, e.g. the storage-server architecture. Below these, there are product
architectures, but since generally several product variations exist, each variation has
its own adapted product architecture, because of which the product architecture could
be called a product line architecture.

Product Line
Architecture

Storage Server Camera Server
Architeture

Scanner Server
ArchitectureArchitecture

CD-ROM Server
Architeture

Jaz Server
Architecture

Variations Variations

Variations Variations

Figure 1. The Axis Software Product Line.

Orthogonal to the products, Axis maintains a product-line architecture and a set of
reusable assets that are used for product construction. The main assets are a
framework providing file-system functionality and a framework providing a common
interface to a considerable set of network protocols, but also smaller frameworks are
used such as a data chunk framework, a smart pointer framework, a ‘toolkit’
framework providing domain-independent classes and a kernel system for the
proprietary processor providing, among others, memory management and a job
scheduler. In figure 2, the organization of the main frameworks and a simplified
representation of the product-line architecture is shown.

www.manaraa.com

Jan Bosch and Mattias Högström 150

Figure 2. Overview of the Main Frameworks Used in Axis’ Products.

3. Product Instantiation

In this section, we describe the software architecture and the process of product
instantiation for the products in the network device product line. We focus on the
StorPointCDE100 product, which is a caching CD-ROM server. It is a member of the
storage product family, which consists of harddisk, cd-rom, jaz-drive servers. The
process of product instantiation consists of three steps, i.e. task scheduler
configuration, service configuration and component parameterization. Finally, we
discuss the variability mechanisms used in the software product line.

The Architecture
The underlying hardware platform is a proprietary system-on-a-chip solution. The
ETRAX 100 chip is a highly specialized and optimized chip designed to boost
network performance. It provides built-in SCSI/IDE ATA-2 and 10/100Mbit ethernet
interface. It is also equipped with a flash memory that allows remote updating of the
software system. Like most embedded systems, the software runs on top of a micro
kernel, in this particular product the OSYS real-time kernel. OSYS is an in-house
developed kernel extended with a task-scheduler and a mail-communication package.

Product Template
Axis maintains a generic architecture template from which individual products are
derived. The template is a skeleton of integration code connecting the kernel, the
mailbox-communication package, the job scheduler, the frameworks and the
components. The high degree of similarity between the product architectures allows

www.manaraa.com

Product Instantiation in Software Product Lines 151

all product configurations to be combined in one single code base. The product
specific code is attached to the reference-product through a C-function interface,
thereby allowing the use of product-specific, but type-equivalent components. The
‘completeness’ of the reference product results in that many product-specific variation
points have become distributed over the reference product, cross-cutting the
architecture. In order to support all configuration subsets, preprocessor directives are
used as a mechanism to attach respectively detach components at compilation. This is
performed through a special header file, specific for each product configuration.
An overview of the architecture, the interaction of the mailbox-communication, tasks
and the jobs is presented graphically in figure 3.

OSYS-kernel
Mail

Flashglow

concrete
specialisations

Tasks
Jobsconcrete

specialisations
Job

scheduler

Access Control FW
File system FW

Protocol FW
box

Task
Scheduler

Figure 3. A Simplified View of the Core Product Architecture.

Since the reference product specifies the component connections, the remaining
configuration activities include the definition of the task-list for the scheduler and the
parameterization of the mailbox handler.

Task-Scheduler Configuration. The task scheduler is configured via a globally
accessible C-struct. Each product variant supplies its own configuration by explicitly
linking it into the final product. Each entry (task) is a function pointer referring to a
startup routine in a ‘active’ component (typically a framework loop), which is
scheduled using a round-robin algorithm.

struct tasks [] = {
idle_main,
job_scheduler,
flashglow,
protocol_main

};

The ‘flashglow’ handles run-time updates of the executable-binary, and the
‘protocol_main’ handles incoming network requests (jobs) and inserts them into the
queue of the ‘job_scheduler’.

Service Configuration. Services are typically component plug-ins of a framework.
Inside each component resides a start-up routine used for initialization and
registration in the framework. When the system boots up, the scheduler posts
‘public_create’ and ‘public_init’ messages via the mailbox. The mailbox itself
contains hard-coded function calls referring to each start-up routine for all available
components. When the messages arrive, first the frameworks are initialized.

www.manaraa.com

Jan Bosch and Mattias Högström152

Subsequently, the components are initialized and registers themselves at the
frameworks. The initialization via the mailbox and component start-up routines
provides a uniform way to add and remove services. At compilation a specific
configuration can choose whether or not to include a service. From the reference
product’s perspective the components and frameworks are detached from each other,
but in reality implicit dependencies exist. This is discussed in the next section.
Below, a small code fragment is shown illustrating the use of precompiler directives
in the mailbox.

MailBox::async_message(<init message>) {
 switch (<message>) {
 #if SMB_INCLUDED
 case SMB_PROG:
 smb_main (<init>);
 break;
 #endif
 #if APPLETALK_INCLUDED
 case APPLETALK_PROG:
 appletalk_main (<init>);
 break;
 #endif
 ..etc..
 }
}

Component Parameterization. Although the frameworks and the framework plug-
ins seem independent, in reality there is a hard coupling between the components and
the frameworks. The components are not reused at binary level, but at source code
level. The source code is a mixture of common code and product-specific code
guarded by precompiler directives. Consequently, each product variant needs to
specify preprocessor directives that include respectively exclude pieces of code before
the product source is compiled into a binary. Both the reference product and the
components need to recompiled, when a service is added. Enabling or disabling a
feature frequently requires recompilation of the complete source code tree, since
features often have relations to multiple components.
Below, a code fragment from the file system component is shown in which the
ISO9660 standard implementation is conditionally included, depending on the
F_ISO9660 and FS_9660 precompiler flags.

void CDMediumFSPrototypeMap::init() {
 #if defined(F_ISO9660) && FS_9660
 this->registerPrototype(new ISO9660Volume());
 //Registers filesystem in the factory
 #endif
 ...etc...
}

www.manaraa.com

Product Instantiation in Software Product Lines 153

Summarizing Discussion

Axis’ product line consists of frameworks, framework plug-ins (components) and a
configurable skeleton of integration code. Inheritance and C++ templates are used as
means to obtain variability of the core assets. The architecture is characterized by its
pervasive use of design patterns, among others Abstract factory, Composite, Observer
and Singleton. Axis has taken reuse beyond the availability of core assets by
providing a skeleton of generic integration code that, once configured, represents a
complete, functional product. This approach has allowed for taking advantage of the
similarities within the product family to its full extent.
The products in the product family are functionally similar but technically dissimilar.
The hardware differences between products complicate the successful abstraction of
common features. Nevertheless, through the extensive use of preprocessing, Axis has
managed to do it in practice. Typical types of usage are: definition of constants and
parameters, configuration of orthogonal features that span over multiple components,
configuration of low-level details hidden behind several abstraction levels, removing
calls/references/dependencies between assets and enabling/disabling hard-coded
sections of source code. The downside of the focus on the current requirements is that
the product line assets are hard to evolve, with consequent effects: increased
complexity of the source code, non-trivial impact analysis, decreased reuse in testing
and frequent recompilation of the complete source tree. The solution does have
several advantages: it maximizes reuse, much more assets can be made “generic”,
assets can be large without loosing configurability and the size of the executable can
be kept small since unnecessary features can be left out. In the next section we have
abstracted some of the problems that we found in our case study into more general
problems specific to product instantiation in software lines.

4. Problems

Based on the analysis of the products in the software product line, interviews with
software architects and engineers and documentation collected at the organizations,
we have identified a number of problems associated with product instantiation in
software product line based development that we believe have relevance in a wider
context than just Axis Communication AB. Some problems are applicable for
product-line development in general, while other problems are specific the embedded
systems domain.
The problems presented here share two main underlying causes, i.e. variability and
evolution. The variability required from the reusable assets to meet the needs from
products in the family creates difficulties because separating general and product
specific functionality is generally not trivial. In addition, evolution of the products
and the reusable components that define most of their functionality causes solutions
and design decisions that were correct at the time they were made to become invalid.
The problem is that removing the effects of these solutions and design decisions may
be prohibitively expensive.

www.manaraa.com

Jan Bosch and Mattias Högström154

Functional Commonality Is not Enough

Problem. The reusable components represent the core of software product lines since
these capture the commonalities between the products. The more commonalties that
can be extracted from the products and captured into reusable components, the
smaller the amount of code that has to be maintained. In addition, larger components
can be reused more efficient [Szyperski 97].
The problem is that commonalities between products cannot always be captured in
generic reusable components, or at least not without considerable effort. A number of
instances of this problem exist. First, products may have conflicting quality
requirements, which require component implementations that are incompatible with
each other. Second, the products may operate on different hardware platforms and it
may prove difficult to avoid the effects of these differences in the component. Finally,
although all or most products in the family may require a particular domain of
functionality represented by a component, different products or subsets of products
may require features that cross-cut the component functionality. Since these features
need to be optional, including or excluding a feature may have effects at several
locations in the component.

Example. The product line of Axis Communications comprises a variety of different
products. The products do not share a common hardware platform. They differ in
configuration of the hardware chip, among the differences are network connectivity
hardware, cache, flash memory and bus architecture (SCSI/ATA-2). The products can
however also differ in peripheral configuration, e.g. data media devices (hd/cd/jaz). A
product is often released in several configurations focussed on particular market
segments. Variants aimed for the high-end market are equipped with expensive
hardware peripherals, whereas low-budget variants often lack these. For example,
Axis StorPointCDE100 is a caching 100 Mbit cd-rom server while StorPointCD10 is
a 10 Mbit non-caching cd-rom server. The two products are functionally almost
identical, except for the difference in hardware and the presence of a cache. The
commonalties between the product variants do not allow for the development of large
reusable assets, because the implementation of the additional features of the high-end
product cross-cuts the component functionality and cannot be handled easily by
traditional variability mechanisms.

Causes. One may argue that this problem is caused by a poor decomposition of the
system into its main components, i.e. a badly designed software architecture. We
investigated this and found no evidence of this being the case. Instead, we became
convinced that even an otherwise optimal decomposition may cause such problems.
The system does simply not allow for a decomposition that supports the variability
requirements for all aspects, e.g. hardware, features, and domain. As we identified in
[2], functionality related to the different aspects becomes intertwined early in the
development process and varying one of these aspects independent of the others once
developed code exists is very difficult.

www.manaraa.com

Product Instantiation in Software Product Lines 155

Single Feature Spans over Multiple Components

Problem. In the previous section, the problem was that multiple features affected a
single component. However, the opposite situation, i.e. an optional feature affecting
multiple components, creates difficulties as well. Configuring a single component is
manageable, but some features require changes in the interaction between
components, affecting the software architecture and consequently, the initialization of
the components. In addition, an orthogonal feature may affect the implementation and
the variability mechanism of individual components. Features that span over multiple
components may require architectural variability to the extent that the benefits
associated with software product lines are compromised.

Example. As mentioned earlier, the StorPointCDE100 product is a caching cd-rom
server whereas the StorPointCD100 product is a non-caching cd-rom server. The
collaborating components behave and interact differently depending on the presence
of a cache. If a cache is present, a number of configurational issues needs to be dealt
with. First, the system must be configured for handling a harddisk (which caches the
content on the CDs). Second, the harddisk requires a read-write file system to be
added to the system, in addition to the ISO9660 read-only file system used for the
CD-ROMs. Third, the cache module needs to be configured (size of cache, block size,
prefetching, etc.). Finally, the cache must be embedded in the software architecture of
the product, i.e. the new components have to be integrated with the existing
architecture and the connections of the existing components need to be reconfigured
to take benefit from the presence of a cache. The presence of a cache affects the
parameterization and interaction of several components, and hence sections of several
initialization routines must be maintained to support a single feature.

Causes. One can identify two main causes for this problem. First, the reusable assets
of a software product line are not optimized for a specific product, but for a family of
products. This means that despite the difficulty of integrating a particular feature in
the product software, the current decomposition and implementation of the software
product line may still represent the optimal solution. The second cause is that loose
coupling is usually favored as a means to decrease dependencies between components
and achieve reuse on a higher level, but not all features can effectively be handled late
in the configuration process.

Excluding Component Features

Problem. In our experience, components in software product lines are typically
relatively large entities, e.g. 100 KLOC. Several of the companies that we cooperate
with make use of object-oriented frameworks to implement the component
functionality. Several of these frameworks, typically black-box, implement the
superset of the functionality required by the products in the family. However, since
the features implemented in the framework typically have relations to other parts
within the framework and to other frameworks, it is normally hard to exclude
functionality. Especially in the domain of embedded systems, this conflicts directly
with, among others, the resource efficiency quality requirement. Variability can, in
several cases, not be supported at the component level without including unused

www.manaraa.com

Jan Bosch and Mattias Högström156

features. Large reusable components have a complex internal architecture with
dependencies between its parts, which complicate the exclusion of parts of the
component.
An additional complicating factor is the fact that components, during evolution, often
have a tendency to incorporate implicit dependencies to other components it uses, see
also [Bosch 99b]. These implicit dependencies make it even harder to exclude unused
functionality from components.

Example. One of the components in the software product line studied in this paper is
a network protocol framework that is reused by all products. It supports a plethora of
different protocols. Most network protocols are implemented on top of lower level
protocols. The protocols implement different abstraction levels, ranging from details
about bit transmission to high-level application logic. For, among others, performance
reasons, the layers in a protocol stack are rather tightly coupled, which make it hard to
exclude unused protocols. The tight coupling results in relatively large components.
The problem is that it generally is very hard to exclude code of a protocol due to the
hard coupling in the implementation, whereas especially in embedded systems it is
important to keep the system ‘footprint’ as small as possible.

Causes. The main cause for this problem is evolution. Often, the first version of a
component supports the variability requirements on the product line at the time of
design. During evolution, typically two types of change scenarios cause the discussed
problem. First, functionality that up to now has been included in all products is
required to become optional because some new product or a new version of some
product demands this. Second, new features are added to the component because a
relevant subset of the product family requires this. During implementation, it is
discovered that the feature affect the component in multiple locations, complicating
the implementation of the optionality of the new feature. A final cause is discussed in
the next section.

Managing Evolution of Product Line Components

Problem. The core components represent common functionality that is shared by the
products. For each product, these components are instantiated and configured to
support the product specific requirements. The number of contexts in which a
component is used may be substantial. During evolution of a component, it may
therefore be difficult to verify compatibility of the new version of the component with
all contexts in which the component may be used. This results in the situation,
especially during development, where products that successfully compiled and ran
one day, suddenly exhibit failures on the next. The problem is a software
configuration management problem, i.e. how to handle impact analysis on a practical
level. Too much analysis slows down production and delays the introduction of new
features in products, whereas too little analysis may require additional work to correct
new versions of components that caused errors in products that incorporate it.

Example. Axis Communications has a product release schedule that updates the
product hardware once or twice per year and the product software three to four times

www.manaraa.com

Product Instantiation in Software Product Lines 157

per year. Customers that have obtained Axis’ products can download new versions of
the software and install it in their product, typically overwriting a flash memory. Axis
constantly enhances its hardware to support more and more functionality. Initially, a
SCSI interface was the only interface provided for connecting harddisks and cd-roms.
But, the low budget market demanded the ATA interface, since the devices are
considerably less expensive than equivalent SCSI devices. There are fundamental
differences between the ATA and SCSI interfaces. ATA is synchronous and non-
multitasking, whereas SCSI is asynchronous and multitasking. Initially, the software
architecture and the components were designed for SCSI, but later versions of these
assets had to be adapted to support the ATA interface standard as well, though not
necessarily at the same time. It turned out to be challenging to incorporate
modifications in core components that are used in all product configurations,
especially when the components go through extensive product-specific configuration
or are used in several contexts, i.e. the component should be able to cooperate with
many different components. Maintenance turned out to be complex, tedious and time
consuming, since it was hard to do a thorough up-front impact analysis that covers all
contexts in all configurations. Incidental dependencies might generate overlap in
functionality or other conflicts. Occasionally, implemented modifications had to be
removed and reimplemented differently to solve configuration conflicts.

Causes. The first cause is that the core components are shared entities and all
products that incorporate these components are affected by modifications. Whenever
the core assets evolve, all products evolve simultaneously. Common features get
ideally inserted in the core components, and hence it is desirable that a change is
compatible with all affected products. The second cause is the high frequency of
incorporating modifications in these core assets. This makes it practically impossible
to verify compatibility for each single modification.

Initialisation Code Is Scattered and Hidden

Problem. Although the reusable components are shared by all or most products, the
components are instantiated and configured for each context in which they are used.
One problem that we have identified is the location of initialization code. A reusable
component typically contains two types of initialization code. First, generic
initialization code that instantiates the internal entities and binds them appropriately.
Second, context specific initialization code that configures the product-specific
aspects of the component instantiation. Typically, even generic component
functionality needs to be configured for product specific details. The ambition of
software product lines is that products in the same product family to share as much
common code as possible, but at the same time are not forced to duplicate similar
code for all variants. The problem is that, due to this structure, initialization code is
spread out throughout the system. First, this causes potential ordering problems
during system start-up. Because the code is spread out through the system, it is hard to
predict whether all components will have all required information, e.g. references to
other components, available at the time of initialization. Second, it is hard to
determine whether the initialization code is complete. If it is not, uninitialized
references and similar problems may cause unpredictable system behavior.

www.manaraa.com

Jan Bosch and Mattias Högström158

Example. The products in the Axis product line are built around a micro-kernel, a
mailbox and a task handler. These parts are relatively tight coupled with the product,
since those parts manage most of the initialization for all products. Initialization can
be viewed as part of the reusable components, since it is shared between all products.
The problem is that the initialization code in a layered architecture of components is
usually hard to access and modify. As a consequence, the product specific details are
actually configured by code from inside the components. One disadvantage is that it
limits the ways in which a product can be tailored and new products can be
incorporated, and it is not obvious what code actually is used in a specific product or
when the code is obsolete and can be removed.

Causes. The primary cause for this problem is there exist two forces that affect the
location of initialization code. On the one hand, one can argue that initialization code
ought to be associated with the instantiated component because it is a logical part of
it. For instance, classes in object-oriented languages have their own constructor
method. On the other hand, locating the initialization code for all components in a
single component allows for more control over the ordering of instantiation and
binding of components. In addition, product-specific functionality and features that
affect multiple components can be implemented and instantiated more easily. The
optimal balance between these forces is, in our opinion, specific to each software
product line. However, typically, generic component initialization code should be
associated with the component and most product-specific initialization code should be
centralized. This consequently leads to initialization code being spread out through
the system.

5. Issues

The problems discussed in the previous section present issues that are plain
problematic and need to be addressed in software product lines. In this section, we
discuss three issues. Different from problems, issues discuss the balancing between
two conflicting forces.

Architectural Compliance versus Product Instantiation Effort

One of the primary advantages of software product lines is the fact that newly
incorporated features automatically become available to all products in the product
line. Since the cost of incorporating a new feature is shared among several products,
the maintenance cost per product can be decreased drastically.
Software products are developed based on the product line assets by deriving a
product architecture from the product line architecture and, subsequently, selecting,
instantiating and configuring product line components. When the product
requirements force the product architecture to deviate considerably from the product
line architecture, fewer product line components can be used for the product and,
consequently, more product specific components need to be developed. However, this
may still be the most cost-effective development strategy because achieving the

www.manaraa.com

Product Instantiation in Software Product Lines 159

product requirements by adding product-specific code to product line components
may require even more effort.
However, if product line members are less compliant to the product line architecture,
the advantages associated with product line evolution are diminished because new
features can only partially be implemented at the product line level and need to be
implemented per product for the remaining part.
Thus, a conflict exists between the ease with which a product can be instantiated and
the cost of evolution in the software product line. The software architecture team for
the product line has to decide where product architectures may deviate from the
product line architecture and where the product line concepts need to be enforced.

Determining Value of an Investment

New requirements on the software product line assets that have architectural impact
can generally be implemented in two ways, i.e. using a quick-fix avoiding architecture
reorganization or by a properly engineered, but expensive implementation. It is
generally difficult to decide whether to accept the drawbacks of a quick-fix or invest
in a proper but expensive upgrade. The software product line approach is an
architecture-centric approach. That means that common features are implemented
once, but may be reused by any product in the product family. This means that the
cost of a feature can be divided over multiple products. Unfortunately, architectural
changes may cause ripple effects onto existing products, forcing these product to
evolve with the architecture. Proper implementation of a requirement with
architectural impact is potentially very expensive.
A quick-fix avoids architecture reorganization and is consequently less effort
demanding, but degrades the structure and conceptual integrity of the software
product line. Multiple quick-fixes will cause architecture erosion and decrease the
economical value of product line assets.
In order to make a well-founded decision, an investment analysis of the different
alternatives may be necessary. A large up-front investment may prove useless due to
unexpected technical issues or market events. A quick-fix requires less effort and
allows for short time-to-market, but are harmful for maintainability of the product
line. Since typically no investment analysis is done, quick-fixes are often not replaced
after the deadline, for instance because few understand the actual implementation and
because it requires effort that otherwise could be spent on adding new features or
products to the product line.
The question is which approach provides the highest return on investment. It is easy
to criticize quick-fixes, but in some cases it is the preferable approach. The lack of
economical models make it hard to show the long-term benefits of a software product
line and how it is affected by various maintenance alternatives.

Component Instantiation Support versus Product Instantiation Effort

Components in a software product line are generally large and relatively complex.
Instantiating and configuring a component for a new member of the product line (or a
new version of an existing member) may therefore be difficult and time consuming.
Since this has to be repeated for all product line components used in the product, the
effort required for the instantiation of the product may be substantial.

www.manaraa.com

Jan Bosch and Mattias Högström160

Although a software component may just provide the source code and the
documented provided, required and configuration interface, the developers of the
component are able to provide more advanced instantiation and configuration support.
For instance, in [13] the use of visual programming tools and domain specific
languages is discussed to instantiate and configure object-oriented frameworks. The
availability of such tools can decrease the instantiation effort considerably.
Although tools supporting component instantiation provide important support for
product instantiation, there are two important issues that should be considered. First,
the development of component instantiation support is effort demanding and increases
the total component development cost substantially. Second, since more software is
associated with a component, i.e. the component code and the instantiation support,
the incorporation of new features in the component will become more expensive
because the instantiation support must evolve as well.
The balance between providing component instantiation support and product
instantiation effort is influenced by the number of new features that need to be
incorporated and by the number of product instantiations that incorporate the product.
Consequently, component instantiation support is more suitable for stable domains
where relatively few new features are incorporated.

6. Conclusions

The notion of software product lines currently provides the most promising approach
to increasing reuse of software and, consequently, decreased development cost and
time-to-market. Several authors have discussed software product lines. For instance,
in [7], the authors discuss an approach to software product lines consisting of
application family engineering, component engineering and application engineering
phases. Although product instantiation is discussed, the problems and issues discussed
in this paper are not addressed. [16] discuss the FAST method, which is a systematic
approach creating a software product line with a primary focus on the use of domain-
specific languages and code generators for these languages. Other work in the area of
software product lines includes [1, 5, 10]. However, none of these publications
discusses product instantiation in software product lines in detail. In [4], we discuss
the development, deployment and evolution phases of software product lines, but do
not discuss the problems and issues presented in this paper.
In this article, we have presented the results of a case study identifying the problems
and issues associated with product instantiation. The case study was performed at
Axis Communications AB and focussed on their set of CD-ROM products in the
networked devices product line. We identified five problems and three issues. The
problems we discussed are concerned with the insufficiency of functional
commonality, features spanning multiple components, the exclusion of unwanted
features, the evolution of product line components and the handling of initialization
code. The issues discuss architectural compliance versus product instantiation effort,
quick-fixes versus properly engineered extensions and component instantiation
support versus product instantiation effort.

www.manaraa.com

Product Instantiation in Software Product Lines 161

The contribution of the paper, we believe, is that it identifies a set of important
problems and issues associated with the instantiation of products within the context of
software product lines. Awareness of these problems and issues allows practitioners
to minimize the negative effects and researchers may use these topics in their
research.

Acknowledgments
We would like to thank Axis Communication AB; in particular Torbjörn Söderberg,
Hendrik Ruijter and Mikael Starvik for their valuable comments and encouragements.

References

1. L. Bass, P. Clements, R. Kazman, Software Architecture In Practice, Addison
Wesley, 1998.

2. Jan Bosch, ‘Evolution and Composition of Reusable Assets in Product-Line
Architectures: A Case Study’, Proceedings of the First Working IFIP Conference
on Software Architecture, February 1999.

3. Bosch, J., ‘Product-Line Architecture in Industry: A Case Study’, Proceedings of
the 21st International Conference on Software Engineering, May 1999.

4. J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach, Addison-Wesley, ISBN0-201-67494-7, 2000.

5. D. Dikel, D. Kane, S. Ornburn, W. Loftus, J. Wilson, ‘Applying Software Product-
Line Architecture,’ IEEE Computer, pp. 49-55, August 1997.

6. M. Fayad, D. Schmidt, R. Johnson, Building Application Frameworks - Object-
Oriented Foundations of Framework Design, ISBN 0-471-24875-4, Wiley, 1999.

7. L. Jacobson, M. Griss, P. Jonsson, Software Reuse: Architecture, Process, and
Organisation for Business Success, Addison-Wesley-Longman, May 1997.

8. R. Johnson, B. Foote, ‘Designing Reusable Classes’, Journal of Object-Oriented
Programming, vol. 1, no. 2, pp. 22-35, 1988.

9. F. van der Linden (Editor), ‘Development and Evolution of Software Architectures
for Product Families’, Proceedings of the Second International ESPRIT ARES
Workshop, Las Palmas de Gran Canaria, Spain, LNCS 1429, Springer Verlag,
February 1998.

10. R.R. Macala, L.D. Stuckey, D.C. Gross, ‘Managing Domain-Specific Product-Line
Development,’ IEEE Software, pp. 57-67, 1996.

11. M. D. McIlroy, ‘Mass Produced Software Components,’ in ‘Software Engineering,’
Report on A Conference Sponsored by the NATO Science Committee, P. Naur, B.
Randell (eds.), Garmisch, Germany, 7th to 11th October, 1968, NATO Science
Committee, 1969.

12. Parnas, D., ‘On the Criteria to be Used in Decomposing Systems into Modules’,
Communications of the ACM, vol. 15, no. 12, pp. 1053-1058, 1972.

13. D. Roberts, R. Johnson, 'Evolving Frameworks: A Pattern Language for
Developing Object-Oriented Frameworks,' Proceedings of the Third Conference
on Pattern Languages and Programming, Montecillio, Illinois, 1996.

14. C. Szyperski, Component Software - Beyond Object-Oriented Programming,
Addison-Wesley, 1997.

15. M. Svahnberg, J. Bosch, ‘Evolution in Software Product Lines: Two Cases’,
Journal of Software Maintenance, Vol. 11, No. 6, pp. 391-422, 1999.

16. D. Weiss, Robert C. Lai, Software Product-Line Engineering: A Family-Based
Software Development Process, Addison-Wesley-Longman, ISBN 0-201-69438-7,
1999.

www.manaraa.com

G. Butler and S. Jarzabek (Eds.): GCSE 2000, LNCS 2177, pp. 163-177, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Mixin-Based Programming in C++1)

Abstract. Combinations of C++ features, like inheritance, templates, and
class nesting, allow for the expression of powerful component patterns. In
particular, research has demonstrated that, using C++ mixin classes, one can
express layered component-based designs concisely with efficient implemen-
tations. In this paper, we discuss pragmatic issues related to component-based
programming using C++ mixins. We explain surprising interactions of C++
features and policies that sometimes complicate mixin implementations,
while other times enable additional functionality without extra effort.

1 Introduction

Large software artifacts are arguably among the most complex products of human
intellect. The complexity of software has led to implementation methodologies that
divide a problem into manageable parts and compose the parts to form the final
product. Several research efforts have argued that C++ templates (a powerful
parameterization mechanism) can be used to perform this division elegantly.

In particular, the work of VanHilst and Notkin [29][30][31] showed how one can
implement collaboration-based (or role-based) designs using a certain templatized
class pattern, known as a mixin class (or just mixin). Compared to other techniques
(e.g., a straightforward use of application frameworks [17]) the VanHilst and Notkin
method yields less redundancy and reusable components that reflect the structure of
the design. At the same time, unnecessary dynamic binding can be eliminated,
resulting into more efficient implementations. Unfortunately, this method resulted
in very complex parameterizations, causing its inventors to question its scalability.

The mixin layers technique was invented to address these concerns. Mixin layers are
mixin classes nested in a pattern such that the parameter (superclass) of the outer
mixin determines the parameters (superclasses) of inner mixins. In previous work
[4][24][25], we showed how mixin layers solve the scalability problems of the Van-
Hilst and Notkin method and result into elegant implementations of collaboration-
based designs.

1) We gratefully acknowledge the sponsorship of Microsoft Research, the Defense Advanced
Research Projects Agency (Cooperative Agreement F30602-96-2-0226), and the Univer-
sity of Texas at Austin Applied Research Laboratories.

Yannis Smaragdakis
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

yannis@cc.gatech.edu

Don Batory
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
batory@cs.utexas.edu

www.manaraa.com

164 Yannis Smaragdakis and Don Batory

This paper discusses practical issues related to mixin-based programming. We adopt
a viewpoint oriented towards C++ implementations, but our discussion is not geared
towards the C++ expert. Instead, we aim to document common problems and solu-
tions in C++ mixin writing for the casual programmer. Additionally, we highlight
issues that pertain to language design in general (e.g., to Java parameterization or to
the design of future languages). Most of the issues clearly arise from the interaction
of C++ features with the constructs under study. The discussion mainly stems from
actual experience with C++ mixin-based implementations but a few points are a
result of close examination of the C++ standard, since they refer to features that no
compiler we have encountered implements. Even though we present an introduction
to mixins, mixin layers, and their uses, the primary purpose of this paper is not to
convince readers of the value of these constructs. (The reader should consult [4],
[24], [25], [26], or [29] for that.)

We believe that the information presented here represents a valuable step towards
moving some powerful programming techniques into the mainstream. We found that
the mixin programming style is quite practical, as long as one is aware of the possible
interactions with C++ idiosyncrasies. As C++ compilers move closer to sophisticated
template support (e.g., some compilers already support separate template compila-
tion) the utility of such techniques will increase rapidly.

2 Background (Mixins and Mixin Layers)

The term mixin class (or just mixin) has been overloaded in several occasions. Mixins
were originally explored in the Lisp language with object systems like Flavors [20]
and CLOS [18]. In these systems, mixins are an idiom for specifying a class and
allowing its superclass to be determined by linearization of multiple inheritance. In
C++, the term has been used to describe classes in a particular (multiple) inheritance
arrangement: as superclasses of a single class that themselves have a common virtual
base class (see [28], p.402). (This is not the meaning that we will use in this paper.)
Both of these mechanisms are approximations of a general concept described by
Bracha and Cook [6]. The idea is simple: we would like to specify an extension with-
out pre-determining what exactly it can extend. This is equivalent to specifying a
subclass while leaving its superclass as a parameter to be determined later. The bene-
fit is that a single class can be used to express an incremental extension, valid for a
variety of classes.

Mixins can be implemented using parameterized inheritance. The superclass of a
class is left as a parameter to be specified at instantiation time. In C++ we can write
this as:

template <class Super>
class Mixin : public Super {
... /* mixin body */

};

To give an example, consider a mixin implementing operation counting for a graph.
Operation counting means keeping track of how many nodes and edges have been

www.manaraa.com

Mixin-Based Programming in C++ 165

visited during the execution of a graph algorithm. (This simple example is one of
the non-algorithmic refinements to algorithm functionality discussed in [33]). The
mixin could have the form:

template <class Graph>
class Counting: public Graph {
int nodes_visited, edges_visited;

public:
Counting() : nodes_visited(0), edges_visited(0), Graph() { }
node succ_node (node v) {
nodes_visited++;
return Graph::succ_node(v);

}
edge succ_edge (edge e) {
edges_visited++;
return Graph::succ_edge(e);

}
...

};

By expressing operation counting as a mixin we ensure that it is applicable to many
classes that have the same interface (i.e., many different kinds of graphs). We can
have, for instance, two different compositions:
Counting< Ugraph > counted_ugraph;

and
Counting< Dgraph > counted_dgraph;

for undirected and directed graphs. (We omit parameters to the graph classes for
simplicity.) Note that the behavior of the composition is exactly what one would
expect: any methods not affecting the counting process are exported (inherited from
the graph classes). The methods that do need to increase the counts are “wrapped”
in the mixin.

VanHilst and Notkin demonstrated that mixins are beneficial for a general class of
object-oriented designs [29]. They used a mixin-based approach to implement col-
laboration-based (a.k.a. role-based) designs [5][15][16][21][29]. These designs are
based on the view that objects are composed of different roles that they play in their
interaction with other objects. The fundamental unit of functionality is a protocol
for this interaction, called a collaboration. The mixin-based approach of VanHilst
and Notkin results in efficient implementations of role-based designs with no redun-
dancy. Sometimes, however, the resulting parameterization code is quite compli-
cated—many mixins need to be composed with others in a complex fashion. This
introduces scalability problems (namely, extensions that instantiate template param-
eters can be of length exponential to the number of mixins composed—see [24]). To
make the approach more practical by reducing its complexity, mixin layers were
introduced. Because mixin layers are an incremental improvement of the VanHilst
and Notkin method, we only discuss implementing collaboration-based designs
using mixin layers.

www.manaraa.com

166 Yannis Smaragdakis and Don Batory

Mixin layers [24][25][26] are a particular form of mixins. They are designed with the
purpose of encapsulating refinements for multiple classes. Mixin layers are nested
mixins such that the parameter of an outer mixin determines the parameters of inner
mixins. The general form of a mixin layer in C++ is:

template <class NextLayer>
class ThisLayer : public NextLayer {
public:

class Mixin1 : public NextLayer::Mixin1 { ... };
class Mixin2 : public NextLayer::Mixin2 { ... };
...

};

Mixin layers are a result of the observation that a conceptual unit of functionality is
usually neither one object nor parts of an object—a unit of functionality may span
several different objects and specify refinements (extensions) to all of them. All such
refinements can be encapsulated in a single mixin layer and the standard inheritance
mechanism can be used for composing extensions.

This property of mixin layers makes them particularly attractive for implementing
collaboration-based designs. Each layer captures a single collaboration. Roles for all
classes participating in a collaboration are represented by inner classes of the layer.
Inheritance works at two different levels. First, a layer can inherit entire classes from
its superclass (i.e., the parameter of the layer). Second, inner classes inherit members
(variables, methods, or even other classes) from the corresponding inner classes in
the superclass layer. This dual application of inheritance simplifies the implementa-
tion of collaboration-based designs, while preserving the benefits of the VanHilst and
Notkin method. An important source of simplifications is that inner classes of a
mixin layer can refer unambiguously to other inner classes—the layer acts as a
namespace.

We illustrate our point with an example (presented in detail in [24]) of a collabora-
tion-based design and its mixin layers implementation. (Full source code is available,
upon request.) This example presents a graph traversal application and was examined
initially by Holland [16] and subsequently by VanHilst and Notkin [29]. This appli-
cation defines three different algorithms on an undirected graph, all implemented
using a depth-first traversal: Vertex Numbering numbers all nodes in the graph in
depth-first order, Cycle Checking examines whether the graph is cyclic, and
Connected Regions classifies graph nodes into connected graph regions. The applica-
tion has three distinct classes: Graph, Vertex, and Workspace. The Graph class
describes a container of nodes with the usual graph properties. Each node is an
instance of the Vertex class. Finally, the Workspace class includes the application part
that is specific to each graph operation. For the VertexNumbering operation, for
instance, a Workspace object holds the value of the last number assigned to a vertex
as well as the methods to update this number.

As shown in Fig 1, we can decompose this application into five independent collabo-
rations—one encompassing the functionality of an undirected graph, another encod-

www.manaraa.com

Mixin-Based Programming in C++ 167

ing depth-first traversals, and three containing the specifics of each graph algorithm
(vertex numbering, cycle checking, and connected regions). Note that each collabo-
ration captures a distinct aspect of the application and each object may participate in
several aspects. That is to say, each object may play several roles. For instance, the
role of a Graph object in the “Undirected Graph” collaboration supports storing and
retrieving a set of vertices. The role of the same object in the “Depth First Tra-
versal” collaboration implements a part of the actual depth-first traversal algorithm.

By implementing collaborations as mixin layers, the modular design of Fig 1 can be
maintained at the implementation level. For instance, the “Vertex Numbering” col-
laboration can be implemented using a layer of the general form:

template <class Next>
class NUMBER : public Next {
public:
class Workspace : public Next::Workspace {
... // Workspace role members

};
class Vertex : public Next::Vertex {
... // Vertex role members

};
};

Note that no role (nested class) is prescribed for Graph. A Graph class is inherited
from the superclass of Number (the class denoted by parameter Next).

Fig 1: Collaboration decomposition of the example application: A depth-first traversal of an
undirected graph is specialized to yield three different graph operations. Ovals represent col-
laborations, rectangles represent classes, their intersections represent roles.

Graph-
Undirected

C
ol

la
bo

ra
tio

ns
 (L

ay
er

s)

Undirected
Graph

Depth First
Traversal

Vertex
Numbering

Cycle
Checking

Connected
Region

Graph Vertex Workspace

VertexWith-
Adjacencies

GraphDFT VertexDFT

VertexNumber Workspace-
Number

VertexCycle Workspace-
Cycle

GraphCycle

Graph-
Connected

Vertex-
Connected

Workspace-
Connected

Object Classes

www.manaraa.com

168 Yannis Smaragdakis and Don Batory

As shown in [24], such components are flexible and can be reused and interchanged.
For instance, the following composition builds Graph, Vertex, and WorkSpace
classes nested inside class CycleC that implement vertex numbering of undirected
graphs using a depth-first traversal:2)

typedef DFT < NUMBER < DEFAULTW < UGRAPH > > > CycleC;

By replacing NUMBER with other mixin layers we get the other two graph algorithms
discussed. Many more combinations are possible. We can use the templates to create
classes that implement more than one algorithm. For instance, we can have an appli-
cation supporting both vertex numbering and cycle checking on the same graph by
refining two depth-first traversals in order:

typedef DFT < NUMBER < DEFAULTW < UGRAPH > > > NumberC;
typedef DFT < CYCLE < NumberC > > CycleC;

Furthermore, all the characteristics of an undirected graph are captured by the
UGRAPH mixin layer. Hence, it is straightforward to apply the same algorithms to a
directed graph (mixin layer DGRAPH interchanged for UGRAPH):3)

typedef DFT < NUMBER < DEFAULTW < DGRAPH > > > NumberC;

This technique (of composing source components in a large number of combinations)
underlies the scalable libraries [3] design approach for source code plug-and-play
components.

3 Programming with C++ Mixins: Pragmatic Considerations

Since little has been written about the pragmatics of doing component programming
using C++ mixins (mixin classes or mixin layers), we feel it is necessary to discuss
some pertinent issues. Most of the points raised below concern fine interactions
between the mixin approach and C++ idiosyncrasies. Others are implementation sug-
gestions. They are all useful knowledge before one embarks into a development
effort using C++ mixins and could serve to guide design choices for future parame-
terization mechanisms in programming languages. The C++ aspects we discuss are
well-documented and other C++ programmers have probably also made some of our
observations. Nevertheless, we believe that most of them are non-obvious and many
only arise in the context of component programming—that is, when a mixin is
designed and used in complete isolation from other components of the system.

Lack of Template Type-Checking. Templates do not correspond to types in the C++
language. Thus, they are not type-checked until instantiation time (that is, composi-

2) The DEFAULTW mixin layer is an implementation detail, borrowed from the VanHilst and
Notkin implementation [29]. It contains an empty WorkSpace class and its purpose is to
avoid dynamic binding by changing the order of composition.

3) This is under the assumption that the algorithms are still valid for directed graphs as is the
case with the original code for this example [16].

www.manaraa.com

Mixin-Based Programming in C++ 169

tion time for mixins). Furthermore, methods of templatized classes are themselves
considered function templates.4) Function templates in C++ are instantiated auto-
matically and only when needed. Thus, even after mixins are composed, not all their
methods will be type-checked (code will only be produced for methods actually ref-
erenced in the object code). This means that certain errors (including type mis-
matches and references to undeclared methods) can only be detected with the right
template instantiations and method calls. Consider the following example:

template <class Super>
class ErrorMixin : public Super {
public:
...
void sort(FOO foo) {
Super::srot(foo); // misspelled

}
};

If client code never calls method sort, the compiler will not catch the misspelled
identifier above. This is true even if the ErrorMixin template is used to create
classes, and methods other than sort are invoked on objects of those classes.

Delaying the instantiation of methods in template classes can be used to advantage,
as we will see later. Nevertheless, many common designs are such that all member
methods of a template class should be valid for all instantiations. It is not straight-
forward to enforce the latter part (“for all instantiations”) but for most practical pur-
poses checking all methods for a single instantiation is enough. This can be done by
explicit instantiation of the template class, which forces the instantiation of all its
members. The idiom for explicit instantiation applied to our above example is:

template class ErrorMixin<SomeFoo>;

When “Subtype of” Does not Mean “Substitutable for”. There are two instances
where inheritance may not behave the way one might expect in C++. First, con-
structor methods are not inherited. Ellis and Stroustrup ([13], p.264) present valid
reasons for this design choice: the constructor of a superclass does not suffice for
initializing data members added by a subclass. Often, however, a mixin class may
be used only to enrich or adapt the method interface of its superclasses without add-
ing data members. In this case it would be quite reasonable to inherit a constructor,
which, unfortunately, is not possible. The practical consequence of this policy is that
the only constructors that are visible in the result of a mixin composition are the
ones present in the outer-most mixin (bottom-most class in the resulting inheritance
hierarchy). To make matters worse, constructor initialization lists (e.g.,
constr() : init1(1,2), init2(3) {})

can only be used to initialize direct parent classes. In other words, all classes need to
know the interface for the constructor of their direct superclass (if they are to use

4) This wording, although used by the father of C++—see [28], p.330—is not absolutely
accurate since there is no automatic type inference.

www.manaraa.com

170 Yannis Smaragdakis and Don Batory

constructor initialization lists). Recall, however, that a desirable property for mixins
is that they be able to act as components: a mixin should be implementable in isola-
tion from other parts of the system in which it is used. Thus a single mixin class
should be usable with several distinct superclasses and should have as few dependen-
cies as possible. In practice, several mixin components are just thin wrappers adapt-
ing their superclass’s interface.

A possible workaround for this problem is to use a standardized construction inter-
face. A way to do this is by creating a construction class encoding the union of all
possible arguments to constructors in a hierarchy. Then a mixin “knows” little about
its direct superclass, but has dependencies on the union of the construction interfaces
for all its possible parent classes. (Of course, another workaround is to circumvent
constructors altogether by having separate initialization methods. This, however,
requires a disciplined coding style to ensure that methods are always called after
object construction.) As a side-note, destructors for base classes are called automati-
cally so they should not be replicated.

Synonyms for Compositions. In the past sections we have used typedefs to intro-
duce synonyms for complicated mixin compositions—e.g.,
typedef A < B < C > > Synonym;

Another reasonable approach would be to introduce an empty subclass:

class Synonym : public A < B < C > > { };

The first form has the advantage of preserving constructors of component A in the
synonym. The second idiom is cleanly integrated into the language (e.g., can be tem-
platized, compilers create short link names for the synonym, etc.). Additionally, it
can solve a common problem with C++ template-based programming: generated
names (template instantiations) can be extremely long, causing compiler messages to
be incomprehensible.

Designating Virtual Methods. Sometimes C++ policies have pleasant side-effects
when used in conjunction with mixins. An interesting case is that of a mixin used to
create classes where a certain method can be virtual or not, depending on the con-
crete class used to instantiate the mixin. This is due to the C++ policy of letting a
superclass declare whether a method is virtual, while the subclass does not need to
specify this explicitly. Consider a regular mixin and two concrete classes instantiat-
ing it (a C++ struct is a class whose members are public by default):

template <class Super>
struct MixinA : public Super {
void virtual_or_not(FOO foo) { ... }

};

struct Base1 {
virtual void virtual_or_not(FOO foo) { ... }
... // methods using “virtual_or_not”

};

www.manaraa.com

Mixin-Based Programming in C++ 171

struct Base2 {
void virtual_or_not(FOO foo) { ... }

};

The composition MixinA<Base1> designates a class in which the method
virtual_or_not is virtual. Conversely, the same method is not virtual in the com-
position MixinA<Base2>. Hence, calls to virtual_or_not in Base1 will call the
method supplied by the mixin in the former case but not in the latter.

In the general case, this phenomenon allows for interesting mixin configurations.
Classes at an intermediate layer may specify methods and let the inner-most layer
decide whether they are virtual or not.

As we recently found out, this technique was described first in [12].

Single Mixin for Multiple Uses. The lack of template type-checking in C++ can
actually be beneficial in some cases. Consider two classes Base1 and Base2 with
very similar interfaces (except for a few methods):

struct Base1 {
void regular() { ... }
...

};
struct Base2 {
void weird() { ... }
... // otherwise same interface as Base1

};

Because of the similarities between Base1 and Base2, it makes sense to use a sin-
gle mixin to adapt both. Such a mixin may need to have methods calling either of
the methods specific to one of the two base classes. This is perfectly feasible. A
mixin can be specified so that it calls either regular or weird:

template <class Super>
class Mixin : public Super {
...

public:
void meth1() { Super::regular(); }
void meth2() { Super::weird(); }

};

This is a correct definition and it will do the right thing for both composition
Mixin<Base1> and Mixin<Base2>! What is remarkable is that part of Mixin
seems invalid (calls an undefined method), no matter which composition we decide
to perform. But, since methods of class templates are treated as function templates,
no error will be signalled unless the program actually uses the wrong method (which
may be meth1 or meth2 depending on the composition). That is, an error will be
signalled only if the program is indeed wrong. We have used this technique to pro-
vide uniform, componentized extensions to data structures supporting slightly dif-

www.manaraa.com

172 Yannis Smaragdakis and Don Batory

ferent interfaces (in particular, the red-black tree and hash table of the SGI
implementation of the Standard Template Library [22]).

Propagating Type Information. An interesting practical technique (also applicable
to languages other than C++) can be used to propagate type information from a sub-
class to a superclass, when both are created from instantiating mixins. This is a com-
mon problem in object-oriented programming. It was, for instance, identified in the
design of the P++ language [23] (an extension of C++ with constructs for compo-
nent-based programming) and solved with the addition of the forward keyword.
The same problem is addressed in other programming languages (e.g., Beta [19])
with the concept of virtual types.

Consider a mixin layer encapsulating the functionality of an allocator. This compo-
nent needs to have type information propagated to it from its subclasses (literally, the
subclasses of the class it will create when instantiated) so that it knows what kind of
data to allocate. (We also discussed this example in detail in [25] but we believe that
the solution presented here is the most practical way to address the problem.) The
reason this propagation is necessary is that subclasses may need to add data members
to a class used by the allocator. One can solve the problem by adding an extra param-
eter to the mixin that will be instantiated with the final product of the composition
itself. In essence, we are reducing a conceptual cycle in the parameterization to a sin-
gle self-reference (which is well-supported in C++). This is shown in the following
code fragment:

template <class EleType, class FINAL>
class ALLOC {
public:
class Node {
EleType element; // stored data type

public:
... // methods using stored data

};

class Container {
protected:
FINAL::Node* node_alloc() {

return new FINAL::Node();
}
... // Other allocation methods

};
};

template <class Super>
class BINTREE : public Super {
public:
class Node : public Super::Node {
Node* parent_link, left_link, right_link ;

public:
... // Node interface

};

www.manaraa.com

Mixin-Based Programming in C++ 173

class Container : public Super::Container {
Node* header; // Container data members

public:
... // Interface methods

};
};

class Comp : public BINTREE < ALLOC <int, Comp> > {/* empty */
};

Note what is happening in this code fragment (which is abbreviated but preserves
the structure of actual code that we have used). A binary tree data structure is cre-
ated by composing a BINTREE mixin layer with an ALLOC mixin layer. The data
structure stores integer (int) elements. Nevertheless, the actual type of the element
stored is not int but a type describing the node of a binary tree (i.e., an integer
together with three pointers for the parent, and the two children of the node). This is
the type of element that the allocator should reserve memory for.

The problem is solved by passing the final product of the composition as a parame-
ter to the allocator mixin. This is done through the self-referential (or recursive)
declaration of class Comp. (Theoretically-inclined readers will recognize this as a
fixpoint construction.) Note that Comp is just a synonym for the composition and it
has to use the synonym pattern introducing a class (i.e., the typedef synonym
idiom discussed earlier would not work as it does not support recursion).

It should be noted that the above recursive construction has been often used in the
literature. In the C++ world, the technique was introduced by Barton and Nackman
[2] and popularized by Coplien [9]. Nevertheless, the technique is not mixin-spe-
cific or even C++-specific. For instance, it was used by Wadler, Odersky and the
first author [32] in Generic Java [7] (an extension of Java with parametric polymor-
phism). The origins of the technique reach back at least to the development of F-
bounded polymorphism [8].

Hygienic Templates in the C++ Standard. The C++ standard ([1], section 14.6)
imposes several rules for name resolution of identifiers that occur inside templates.
The extent to which current compilers implement these rules varies, but full con-
formance is the best approach to future compatibility for user code.

Although the exact rules are complicated, one can summarize them (at loss of some
detail) as “templates cannot contain code that refers to ‘nonlocal’ variables or meth-
ods”. Intuitively, “nonlocal” denotes variables or methods that do not depend on a
template parameter and are not in scope at the global point closest to the template
definition. This rule prevents template instantiations from capturing arbitrary names
from their instantiation context, which could lead to behavior not predicted by the
template author.

www.manaraa.com

174 Yannis Smaragdakis and Don Batory

A specific rule applies to mixin-based programming. To quote the C++ standard
(14.6.2), “if a base class is a dependent type, a member of that class cannot hide a
name declared within a template, or a name from the templates enclosing scopes”.
Consider the example of a mixin calling a method defined in its parameter (i.e., the
superclass of the class it will create when instantiated):

struct Base {
void foo() { ... }

};

void foo() { }

template <class Super>
struct Mixin : public Super {
void which_one() { foo(); } // ::foo

};

Mixin < Base > test;

That is, the call to foo from method which_one will refer to the global foo, not the
foo method of the Base superclass.

The main implication of these name resolution rules is on the way template-based
programs should be developed. In particular, imagine changing a correct class defini-
tion into a mixin definition (by turning the superclass into a template parameter).
Even if the mixin is instantiated with its superclass in the original code, the new pro-
gram is not guaranteed to work identically to the original, because symbols may now
be resolved differently. This may surprise programmers who work by creating con-
crete classes and turning them into templates when the need for abstraction arises. To
avoid the potential for insidious bugs, it is a good practice to explicitly qualify refer-
ences to superclass methods (e.g., Super::foo instead of just foo).

Compiler Support. Most C++ compilers now have good support for parameterized
inheritance (the technique we used for mixins) and nested classes. We have encoun-
tered few problems and mostly with older compilers when programming with C++
mixins. In fact, most of the compiler dependencies are not particular to mixin-based
programming but concern all template-based C++ programs. These include limita-
tions on the debugging support, error checking, etc. We will not discuss such issues
as they are time-dependent and have been presented before (e.g., [10]). Note, how-
ever, that mixin-based programming is not more complex than regular template
instantiation and typically does not exercise any of the “advanced” features of C++
templates (type inference, higher-order templates, etc.). Overall, the compiler sup-
port issues involved in mixin-based programming are about the same as those arising
in implementing the C++ Standard Template Library [27].

www.manaraa.com

Mixin-Based Programming in C++ 175

4 Related Work

Various pieces of related work have been presented in the previous sections. We
cannot exhaustively reference all C++ template-based programming techniques, but
we will discuss two approaches that are distinct from ours but seem to follow paral-
lel courses.

The most prominent example is the various implementations of the STL. Such
implementations often exercise the limits of template support and reveal interac-
tions of C++ policies with template-based programming. Nevertheless, parameter-
ized inheritance is not a part of STL implementations. Hence, the observations of
this paper are mostly distinct from the conclusions drawn from STL implementation
efforts.

Czarnecki and Eisenecker’s generative programming techniques [10][11] were used
in the Generative Matrix Computation Library (GMCL). Their approach is a repre-
sentative of techniques using C++ templates as a programming language (that is, to
perform arbitrary computation at template instantiation time). What sets their
method apart from other template meta-programming techniques is that it has simi-
lar goals to mixin-based programming. In particular, Czarnecki and Eisenecker try
to develop components which can be composed in multiple ways to yield a variety
of implementations. Several of the remarks in this paper are applicable to their
method, even though their use of mixins is different (for instance, they do not use
mixin layers).

5 Conclusions

We presented some pragmatic issues pertaining to mixin-based programming in
C++. We believe that mixin-based techniques are valuable and will become much
more widespread in the future. Mixin-based programming promises to provide reus-
able software components that result into flexible and efficient implementations.

Previous papers have argued for the value of mixin-based software components and
their advantages compared to application frameworks. In this paper we tried to
make explicit the engineering considerations specific to mixin-based programming
in C++. Our purpose is to inform programmers of the issues involved in order to
help move mixin-based programming into the mainstream.

References
[1] ANSI / ISO Standard: Programming Languages—C++, ISO/IEC 14882,

1998.
[2] J. Barton and L.R. Nackman, Scientific and Engineering C++: An

Introduction with Advanced Techniques and Applications, Addison-Wesley,
1994.

[3] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software
Libraries”, ACM SIGSOFT 1993.

www.manaraa.com

176 Yannis Smaragdakis and Don Batory

[4] D. Batory, R. Cardone, and Y. Smaragdakis, “Object-Oriented Frameworks and
Product-Lines”, 1st Software Product-Line Conference, Denver, Colorado,
August 1999.

[5] K. Beck and W. Cunningham, “A Laboratory for Teaching Object-Oriented
Thinking”, OOPSLA 1989, 1-6.

[6] G. Bracha and W. Cook, “Mixin-Based Inheritance”, ECOOP/OOPSLA 90,
303-311.

[7] G. Bracha, M. Odersky, D. Stoutamire and P. Wadler, “Making the future safe
for the past: Adding Genericity to the Java Programming Language”, OOPSLA
98.

[8] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell, “F-bounded
Polymorphism for Object-Oriented Programming”, in Proc. Conf. on
Functional Programming Languages and Computer Architecture, 1989, 273-
280.

[9] J. Coplien, “Curiously Recurring Template Patterns”, C++ Report, 7(2):24-27,
Feb. 1995.

[10] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

[11] K. Czarnecki and U. Eisenecker, “Synthesizing Objects”, ECOOP 1999, 18-42.
[12] U. Eisenecker, “Generative Programming in C++”, in Proc. Joint Modular

Languages Conference (JMLC’97), LNCS 1204, Springer, 1997, 351-365.
[13] M.A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual,

Addison-Wesley, 1990.
[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1994.
[15] R. Helm, I. Holland, and D. Gangopadhyay, “Contracts: Specifying Behavioral

Compositions in Object-Oriented Systems”. OOPSLA 1990, 169-180.
[16] I. Holland, “Specifying Reusable Components Using Contracts”, ECOOP

1992, 287-308.
[17] R. Johnson and B. Foote, “Designing Reusable Classes”, J. of Object-Oriented

Programming, 1(2): June/July 1988, 22-35.
[18] G. Kiczales, J. des Rivieres, and D. G. Bobrow, The Art of the Metaobject

Protocol. MIT Press, 1991.
[19] O.L. Madsen, B. Møller-Pedersen, and K. Nygaard, Object-Oriented

Programming in the BETA Programming Language. Addison-Wesley, 1993.
[20] D.A. Moon, “Object-Oriented Programming with Flavors”, OOPSLA 1986.
[21] T. Reenskaug, E. Anderson, A. Berre, A. Hurlen, A. Landmark, O. Lehne, E.

Nordhagen, E. Ness-Ulseth, G. Oftedal, A. Skaar, and P. Stenslet, “OORASS:
Seamless Support for the Creation and Maintenance of Object-Oriented
Systems”, J. of Object-Oriented Programming, 5(6): October 1992, 27-41.

[22] Silicon Graphics Computer Systems Inc., STL Programmer’s Guide. See:
http://www.sgi.com/Technology/STL/ .

[23] V. Singhal, A Programming Language for Writing Domain-Specific Software
System Generators, Ph.D. Dissertation, Dep. of Computer Sciences, University
of Texas at Austin, August 1996.

[24] Y. Smaragdakis and D. Batory, “Implementing Reusable Object-Oriented
Components”. In the 5th Int. Conf. on Software Reuse (ICSR 98).

www.manaraa.com

Mixin-Based Programming in C++ 177

[25] Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mixin
Layers”. In ECOOP 98.

[26] Y. Smaragdakis, “Implementing Large-Scale Object-Oriented Components”,
Ph.D. Dissertation, Department of Computer Sciences, University of Texas at
Austin, December 1999.

[27] A. Stepanov and M. Lee, “The Standard Template Library”. Incorporated in
ANSI/ISO Committee C++ Standard.

[28] B. Stroustrup, The C++ Programming Language, 3rd Ed., Addison-Wesley,
1997.

[29] M. VanHilst and D. Notkin, “Using C++ Templates to Implement Role-Based
Designs”. JSSST International Symposium on Object Technologies for
Advanced Software, Springer-Verlag, 1996, 22-37.

[30] M. VanHilst and D. Notkin, “Using Role Components to Implement
Collaboration-Based Designs”. OOPSLA 1996.

[31] M. VanHilst and D. Notkin, “Decoupling Change From Design”, SIGSOFT
96.

[32] P. Wadler, M. Odersky and Y. Smaragdakis, “Do Parametric Types Beat
Virtual Types?”, unpublished manuscript, posted in October 1998 in the Java
Genericity mailing list (java-genericity@cs.rice.edu).

[33] K. Weihe, “A Software Engineering Perspective on Algorithmics”, available
at http://www.informatik.uni-konstanz.de/Preprints/ .

www.manaraa.com

Metaprogramming in the Large

Andreas Ludwig and Dirk Heuzeroth

Institut für Programmstrukturen und Datenorganisation
Universität Karlsruhe

{ludwig,heuzer}@ipd.info.uni-karlsruhe.de

Abstract. Software evolution demands continuous adaptation of soft-
ware systems to continuously changing requirements. Our goal is to cope
with software evolution by automating program transformation and sys-
tem reconfiguration. We show that this can be achieved with a static
metaprogramming facility and a library of suitable metaprograms. We
show that former approaches of program transformations are not suffi-
cient for large object oriented systems and outline two base transforma-
tions that fill the gap.

1 Introduction

Many software systems have grown enormously large in the last decades. Require-
ments for these systems have changed continuously, and still do. Consequently,
the software needs to be adapted all the time: software evolves. However, chang-
ing software is a complex and error prone task and is likely to produce high
costs. One reason for this are lots of dependencies in typical programs, which
make them hard to understand. Moreover, the effects of changes to a system
are hard to predict. This is especially true for large changes like system restruc-
turing, addition, removal and exchange of components and subsystems as well
as composition of components. But even small modifications like changing the
signature of a single method may show effects throughout the whole system:
for instance, a changed method parameter type can not only influence all ref-
erences to that method but also all references to overloaded methods which in
turn might be defined in any subclass. To deal with those effects, we require
global information about the program and must hence operate in the large. We
provide further examples in sections 2 and 3.

Software evolution means transforming programs. Our group developed a
static metaprogramming facility called COMPOST that provides a library of
useful analyses and transformations. We found metaprogramming to be a natural
and very promising strategy to carry out changes consistently and thus support
both software evolution and software construction.

To cope with software evolution and construction, software must be easy to
change. We therefore focus on software changes and start with a concrete sce-
nario, the evolution from JDK 1.0 to JDK 1.3 (section 2). After that, we identify
some program transformations that are needed for our purposes, especially to
deal with imperative object oriented programs (section 3). We then outline the

G. Butler and S. Jarzabek (Eds.): GCSE 2000, LNCS 2177, pp. 178–187, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

www.manaraa.com

Metaprogramming in the Large 179

infrastructure needed to actually perform those changes (section 4). Finally, we
discuss related work and possible uses of metaprogramming in these areas, which
we cannot cover in detail here (section 5). We conclude with our experiences and
suggestions for future work (section 6).

2 Software Evolution Scenario

Assume that a new version of a component offers improved behaviour, but also
comes with a changed interface. In order to use the revised version, all using
contexts of this component have to be updated. Now assume that the programs
that have been using the old component are also maintained. Then, binary com-
patibility is not sufficient. Instead, the programs must be brought to the state
of the art at source level.

Example 1 (JDK Update). There have been about 300 changes in the API
of the standard Java libraries up to now — a complete list is available at
http://java.sun.com/j2se/1.3/docs/api/deprecated-list.html. These interface
changes affect all pieces of Java software that rely on the now “deprecated” features;
we classify these changes as follows and will study them in detail later on:

① Local changes of signatures (name or parameters), e. g. in java.awt.Component:

– move(int, int) → setLocation(int, int)

– disable() → setEnabled(false)

– add(String, Component) → add(Component, Object)

② Change of the location of features, e.g. in java.awt:

– Frame.CROSSHAIR CURSOR → Cursor.CROSSHAIR CURSOR

– Frame.getCursorType() → Component.getCursor().getType()

③ Removal or replacement of features, e.g.

– java.awt.Component.getPeer() → ∅ (deleted)

– java.io.StringBufferInputStream → java.io.StringReader

④ Change of an entire framework, using multiple design patterns, such as the new
event handling framework that replaces a template method based solution by an
observer pattern, which concerns some dozen classes in several packages.

How can we automate an update for a large system? The solution is at hands:
Let the programmer of the component write a “smart patch” metaprogram that
is able to update arbitrary programs.

The scenario illustrates what we consider metaprogramming in the large. In
this setting, we have a big advantage, as some of the semantics of the system
to change is known. Assuming that the old versions of the components have
been used correctly allows to assert many predicates that would have been very
hard to find out by analyses, such as object lifetime dependencies. After some
basic transformations have been detailed, we illustrate how this knowledge can
be used in the second part of the example.

www.manaraa.com

180 Andreas Ludwig and Dirk Heuzeroth

3 New Program Transformations

Program transformations have been investigated for years (for a good overview
see [CE00]). We discuss how goals and languages have changed since then and
now require further transformations. We then sketch an abstract program model
to deal with object oriented languages, and finally discuss two fundamental trans-
formations based upon that model.

3.1 Classical Program Transformations Improved

The primary research focus of classical program transformations was program
refinement and optimisation, as well as the creation of extensible languages. The
most important achievements are a set of base transformations such as add def-
inition, fold, unfold, function generalisation and specialisation, and techniques
to resolve recursions. These transformations were based upon a functional pro-
gramming model and local contexts only, to avoid the problems introduced by
states and scopes. However, states and scopes are inherent parts of imperative
object oriented languages. While the known base transformations reappear in
more specific forms to suit the rules of the concrete language, further base trans-
formations are required to cover states and scopes.

Transformations come with a set of constraints restricting their use, e. g.
prohibition of ambiguous names. Single transformations often lack constructive
strategies how to fulfil these conditions; usually, only a combination of transfor-
mations is applicable. Thus, the goal is to collect sufficient information about
the context to derive applicable chains of transformations to achieve the desired
effects.

3.2 Nested Feature Model for Object Oriented Languages

Feature

Class Variable Method

Package Attribute ConstructorParameter

Declaration

Reference

0..1

0..*

0..*

Fig. 1. Simple Nested Feature Model.

The notions of component interfaces
and scopes are somewhat dependent
on the concrete language. There-
fore, we introduce an abstract pro-
gram model consisting of hierarchi-
cally nested features such as classes,
variables, and methods, which may
define a scope (see Figure 1). We
may regard packages, constructors, at-
tributes or parameters as special cases
of classes, methods, or variables. To
complete this simplistic model, we distinguish declarations of features and ref-
erences to features which are contained within a scope, and assume that each
feature has at most one definition, but arbitrarily many references. The exact
rules for feature declarations, feature nesting, and feature reference resolution
(including feature visibilities, overloading, and inheritance) are part of the lan-
guage specification. In our experiments, we used Java as a representative object
oriented language.

www.manaraa.com

Metaprogramming in the Large 181

3.3 A Transformation to Deal with States

The feature model has no visible states to manipulate directly. However, the
state transitions defined by variable and method accesses can be used to bring
in new states. These accesses may be embedded into arbitrary expression terms.
To avoid side effects in the partial expressions that are evaluated prior to the
feature access, we need a transformations that shifts these parts and flattens the
syntax tree of the expression term. The following example illustrates this.

Example 2 (Expression Flattening). Consider the expression x = f(g(y), h(k(z)) and
assume we want to insert some code before the very moment when f is accessed. The
transformation should produce: int i = g(y); boolean b = h(k(z)); /* some new code */
x = f(i, b); — now the reference to f is the first expression that is evaluated in the state-
ment. Note that the types of g and h cannot be derived from the original expression,
and that it was not necessary to flatten k.

The transformation takes a reference to a variable or method as argument
and flattens the top-level expression term this reference is contained within:

1. Collect all expressions that become evaluated before the relevant feature
access and that may have side effects.

2. For each largest expression e in the order of evaluation:
(a) Calculate the type τ of e
(b) Create a new unambiguous temporary variable v of type τ and insert

the declaration of v in front of the the top-level expression.
(c) Insert e as initialisation code of the variable.
(d) Substitute the original occurrence of e with a new reference to v.

This code transformation allows to modify arbitrary accesses to features by
simple insertion of new code. It is easy to see how it can be used for instrumen-
talisation or to exchange method calls by other means of communication.

Note that this transformation requires context sensitive information to derive
the types of expressions, and to choose an unambiguous variable name.

3.4 A Transformation to Deal with Scopes

The most general and basic transformation that is able to reconfigure inter-
faces is move feature declarations.1 The transformation consists of two subtasks,
which are also base transformations: creating new feature declarations in the
new scope, and deletions of old declarations. Note that we explicitly allow in-
heritance, feature hiding, overloading, and combinations thereof.

1. Insert feature declarations in the new scope
(a) Check if a declaration is forbidden due to ambiguous names in the new

scope, or incompatible modifiers or signatures while attempting to over-
write a feature of identical name in a superclass. If so, rename the feature,
or optionally change modifiers in the superclass.

1 Special cases of this transformation are already depicted in [FBB+99] as refactorings.
The version presented here is more general and more detailed.

www.manaraa.com

182 Andreas Ludwig and Dirk Heuzeroth

(b) Check if a definition hides less general definitions that are overloaded or
overwritten. If so, rename the new features, or strengthen qualification
of references to the hidden feature (add type casts or access qualifiers).

2. Remove feature declarations from the old scope
(a) Check if there are references from the moved features to other features in

the old scope. If so, redirect them to the old scope using a proper access
path. If no predefined access path is available, create a new one by adding
an additional parameter to each feature. If necessary, adapt visibilities
of the used features to allow access from the new scope. Alternatively,
compute a self-dependent feature group and ask the user if this group
shall be moved instead.2

(b) Check if there are external references to the features in the old scope. If
so, redirect them to the new scope, by using a proper access path.

This transformation allows to reconfigure system interfaces arbitrarily. If one
reads design patterns as instructions how to change a system rather than creating
one from scratch, then many of them are built upon this transformation.

Finding access paths is a key issue in this transformation when the scopes
are classes. In many cases, access paths are predefined, either by the caller of the
transformation, or if features are global, or the scopes are nested or inherited (see
Figure 2) — then, the underlying objects are either accessible from anywhere,
identical, or share the same life time.

Z

X

Y

XX

X

X

Y Z Y

X

Z

Z

Y

Z

Y

Y

Z

Fig. 2. Feature Movement Schemes – General Case and Two Specialisations
(below) — Note that the admissible feature types of x, y and z may vary.

In the general case, no predefined access path is available. Sometimes, it is
possible to identify a unique path candidate that is free of possible side effects. If
there are several solutions, the choice is a genuine design decision and should be
left to the user. If there is not even a possible candidate, the transformation can
attach a new attribute and insert some initialisation code for the target object,
if the initialisation is not ambiguous.

We learn two lessons from this example: First, user interaction is required
when analyses fail and design alternatives must be chosen. Second, a non-trivial
transformation requires a lot of subtasks which have to be addressed. Figure 3
illustrates some auxiliary functions.
2 This is the reason why moving a set of declarations can be easier than a single one.

www.manaraa.com

Metaprogramming in the Large 183

Change Feature ModifierFlatten Expression Check Visibility of Feature

Create Variable Reference Create New Variable Name

Rename Feature Globally

Change Feature Reference Path Locate All Feature References

Create Type Reference Check Ambiguity of Feature

Insert Feature Declaration

Fig. 3. Transformation Subtasks.

Example 3 (JDK Update Revisited). Equipped with the transformations just pre-
sented and additional knowledge about concrete components that we have to deal with,
we can now try to find a metaprogram that would have saved enormous amounts of
programming time. . .

① Local changes of signatures: Renaming is a task similar to addition of a new feature,
while a change of parameters requires a change of arguments on the caller side —
flattening the expressions that might have side effects is the most difficult part.

② Change of the location of features: The examples given are easy to handle with
feature moves as we have to deal with global constants, or already know a proper
replacement access path.

③ Removal or replacement of features: In the case of the deprecated Peer classes, there
is no obvious update. However, the only proper use of the peers has been to check
for consistent initialisation state. We can attempt to pattern match for c.getPeer() !=
null and replace this expression by c.isDisplayable(). The second example concerning
the replacement of an improper Unicode stream, is also hard to resolve, as different
data types (byte vs. char) are involved. But again, all meaningful uses should not rely
on concrete bit counts, so a simple reassignment of methods to their counterparts is
sufficient. Only one method features a different signature: read(char[],int,int) replaces
read(byte[],int,int). Typical uses of the old version will have translated the byte array
into a string or a character array anyway, but to ensure compatibility, we would have
to insert some translation code. We have to attach some glue code to calls of the form
in.read(arr, off, len) in order to obtain:

char[] tmp = new char[arr.length];
in.read(tmp, off, len);
System.arraycopy(new String(tmp, off, len).getBytes(), 0, arr, off, len);

There are some details to get right, such as adding a new statement block when nec-
essary and getting rid of side effect expressions in access paths.

④ Change of an entire framework: Beginning with JDK 1.1, event handling changed
to an observer pattern replacing redefined methods of the corresponding components.
The following code snippets show a simple solution obtained by some feature moves.
The former action method in class C

public boolean action(Event e, Object what) {
// action code here
return super.action(e, what); // or other expression

}
is transformed into a new attribute declaration in C

www.manaraa.com

184 Andreas Ludwig and Dirk Heuzeroth

ActionListener actions = new ActionListener() {
public void actionPerformed(ActionEvent e) {

// user code from super.action goes here
// action code here; ‘what’ redirected to e.getActionCommand()
// no return value here - no need to consume events

}
};

plus an additional call addActionListener(actions); in each constructor of C.

Example 3 shows that an automatic update is actually possible while human
interaction is necessary only in few cases.

In the following section, we discuss the specific requirements and challenges
for a technical infrastructure supporting the construction of metaprograms.

4 Object Oriented Metaprogramming Realized

Sources
Metamodel

Prettyprinter

Frontend

Transformations

Fig. 4. Source Level Transformations.

The general procedure of source
to source transformations is il-
lustrated in Figure 4: A com-
piler frontend produces a meta-
model from the sources, which
includes all syntactic data nec-
essary for the pretty printer to
reproduce the sources later on.
Transformations can use any
derived information to change
the syntactic parts.

4.1 Requirements for Metaprogramming Systems

Metaprograms must cover some important requirements, and these must be con-
sidered when supplying tools to facilitate the construction.

Readability: A metaprogramming system changes source codes. The result
should obey coding conventions and should not destroy formatting. In this set-
ting, blank spaces become important and must be protected. In general, “code
bloat” should be kept to a minimum.

Scalability: In contrast to compilers, metaprogramming systems change the syn-
tactic base of the metamodel during runtime. Hence, when used in an interac-
tive and incremental environment, information derived from the syntactic model
must also be updated incrementally. To retain scalability, it is not feasible to
invalidate the whole model after a change. Instead, it is necessary to carefully
analyse change impacts to prevent transitive propagation throughout the model.
For instance, a change of a feature declaration may change the assignment of all
references to the feature and all hidden ones.

Note that the smart patch scenario is not necessarily incremental — usually it is

possible to do all necessary analyses in advance and delay the transformations.

www.manaraa.com

Metaprogramming in the Large 185

Extensibility: There are lots of possible transformations motivated by high level
design problems. A library of metaprograms is therefore unlikely to be complete,
but it should be extensible. A proper system design should facilitate the creation
of metaprograms. For instance, the metamodel interface should hide the process
of information retrieval, offer navigational links, and provide meaningful abstrac-
tions over the concrete representations. Auxiliary transformations, analyses and
code snippet generators should become part of the library.

4.2 Limitations of Metaprogramming Systems

Source level metaprogramming suffers from some general problems.
Source code hygiene and especially comment assignment are an issue. Com-

ments will not always be assigned properly and may move with the wrong ele-
ment. Also, it will not always be possible to avoid some redundant code.

In general, comments and documentation do not obey a formal semantics
and hence cannot be maintained automatically. However, it is possible to auto-
mate changes of designated, formal parts. For instance, the Java documentation
conventions require to tag feature references with @see or @link making them
accessible for analysis and transformations.

Analyses are conservative and may fail to derive enough information to do
certain decisions automatically. Then, interaction with the human programmer
is needed. Sometimes an alternative approach can be found, which might be far
from perfect, but functional — e. g. to insert a new attribute and ignore an un-
certain candidate. Possible improvements could then be offered in an interactive
session after the main transformations have taken place.

4.3 COMPOST - An Implementation

We have been constructing a metaprogramming system for the Java program-
ming language called COMPOST (COMPOsition SysTem). The system is avail-
able from http://i44www.info.uni-karlsruhe.de/~compost and consists of
nearly 600 classes. It contains a Java frontend providing facilities to resolve
feature references and for cross reference information. The pretty printer is con-
figurable to fit specific conventions and is able to reproduce (or improve upon)
the original input and to insert new code seamlessly. We have built a library
of auxiliary functions and transformations also containing the auxiliaries from
Figure 3.

Transformations are responsible for the maintenance of the abstract syntax
model, while the pretty printer handles the concrete syntax, and lookup services
update the derived semantic information. Transformations report the syntactic
effects of their changes, and this information is interpreted by a responsible
service as soon as new semantic information is required.

4.4 Experiences

Memory consumption of a metaprogramming system is high, but does not exceed
that of an optimising compiler, and seems to scale with the size of the program.
We were able to analyse 3000 classes on a state of the art workstation.

www.manaraa.com

186 Andreas Ludwig and Dirk Heuzeroth

Naive incremental model updates are sufficient for a handful of classes only,
but more sophisticated algorithms should be able to handle a big number of
classes, as some sparse experiments in literature have indicated [BS86] [Wag98].

We have chosen Java as our primary target language, but metaprogramming
should be applicable for all programming languages. In general, languages pro-
viding many static predicates allow to do more decisions automatically based on
the additional knowledge represented by these predicates.

5 Related Work

We already compared metaprogramming with program transformation systems
in section 3. Now we discuss related work in the area of software evolution.

Extreme programming (XP) [Bec99] is a development process to support
evolutionary programming. XP relies on testing to assure the correctness of
changes. Verified metaprograms would no longer require additional tests.

The base mechanics of XP are refactorings [FBB+99]. Refactorings are pro-
gram transformations that optimise for readability. To create sophisticated tool-
ing, the strategies given in the catalogues are still too vague and heavily rely
on the programmer. Compiler construction research can provide solutions for
many problems, but we need a more formal background to do so. The feature
movement transformation is an attempt to generalise many special cases.

While refactorings are too local to have a meaningful motivation by them-
selves, design patterns [GHJV95] are complete development processes leading
from a single design problem down to implementations. In many cases, the pat-
tern can be regarded as an instruction to change software, using a series of
refactorings and similar transformations [Zim97]. If this is possible, then we can
derive a metaprogram instantiating the pattern. For instance, moving features
is fundamental to create new levels of indirection widely used in patterns.

Architectural systems [SDZ95] allow to exchange connectors representing a
communication association. Similarly, composition languages [NM95] focus on
the wiring of software components. Metaprograms can easily exchange connec-
tors or compose programs avoiding special languages.

Generic programming allows to bind parameters embedded in the code with
concrete syntactic content. Metaprogramming can simulate the instantiation of
a parameter and even attempt to identify the replacement locations even if they
were not tagged as parametric.

Aspect oriented programming [KIL+97] or multidimensional separation of
concerns [OT99] intend to offer multiple views on the (abstract) program that
might not be identical to the primary functional modularisation. Each aspect,
or concern, can be changed separately, and must then be merged, or woven,
with the other aspects to derive the final model. This weaving process can be
implemented by a metaprogram.

In this work we concentrated on the support of transformations for refactoring
software systems rather than the configuration of system families. The latter is
subject of the generative programming paradigm [CE00].

www.manaraa.com

Metaprogramming in the Large 187

6 Conclusion

We showed that program transformations realized by metaprograms significantly
facilitate consistent and correct changes and that this approach is a well suited
technique for software evolution. Furthermore, we demonstrated that metapro-
gramming fits seamlessly into emerging design techniques such as design pat-
terns, separation of concerns, and refactorings.

We identified two important basic transformations that are necessary for
reconfiguring large imperative object oriented systems. We also showed that
metaprogramming is feasible for real world languages with the right tool sup-
port. We described the infrastructure necessary for source to source metapro-
gramming. COMPOST is an implementation of such an infrastructure.

Future work comprises the identification of further base transformations for
object oriented programs as well as fast incremental model updates since there
is still little experience in this area.

References

Bec99. Kent Beck. extreme Programming explained. Addison Wesley, Reading, MA,
1999.

BS86. Rolf Bahlke and Gregor Snelting. The PSG System: From Formal Language
Definitions to Interactive Programming Environments. ACM Transactions
on Programming Languages and Systems, 8(4):547–576, October 1986.

CE00. Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming.
Addison Wesley, 2000.

FBB+99. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Object Technology Series. Addison-
Wesley, 1999.

GHJV95. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
Reading, MA, 1995.

KIL+97. Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier,
Cristina Videira Lopes, Chris Maeda, and Anurag Mendhekar. Aspect-
oriented Programming. In ECOOP’97, pages 220–242. Springer-Verlag,
1997.

NM95. Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a composition
language. In O. Nierstrasz P. Ciancarini and A. Yonezawa, editors, Object-
Based Models and Languages for Concurrent Systems, LNCS 924, pages 147–
161. Springer-Verlag, 1995.

OT99. Harold Ossher and Peri Tarr. Multi-dimensional separation of concerns in
hyperspace. Technical report, IBM T.J. Watson Research Center, 1999.

SDZ95. Mary Shaw, Robert DeLine, and Gregory Zelinski. Abstraction and Imple-
mentation for Architectural Connections. Technical report, CMU, November
1995.

Wag98. Tim A. Wagner. Practical Algorithms for Incremental Software Development
Environments. Ph.D. thesis, Computer Science Division, EECS Department,
University of California, March 1998.

Zim97. Walter Zimmer. Frameworks und Entwurfsmuster. PhD thesis, Universität
Karlsruhe, February 1997.

www.manaraa.com

Just When You Thought

Your Little Language Was Safe:
“Expression Templates” in Java

Todd L. Veldhuizen

Extreme Computing Laboratory
Indiana University Computer Science Department

Bloomington Indiana 47405, USA
tveldhui@acm.org

Abstract. Template techniques in C++ allow a modest degree of gen-
erative programming: creating specialized code for specialized problems.
This use of templates has been controversial; indeed, one of the oft-cited
reasons for migrating to Java is that it provides a simpler language, free
of complexities such as templates. The essence of generative program-
ming in C++ is not templates – the language feature – but rather the
underlying algorithms in the compiler (template instantiation) which un-
intentionally resemble an optimization called partial evaluation [12,18].
By devising a partial evaluator for Java, we reproduce some of the gen-
erative programming aspects of C++ templates, without extending the
Java language. The prototype compiler, called Lunar, is capable of doing
“expression templates” in Java to optimize numerical array objects.

1 Introduction

Good numeric performance for Java is mostly limited to code written in what
might be called JavaTran (Java/FORTRAN) style: Fortran 77-like code sur-
rounded by class declarations. A typical example is:

public class DoArrayStuff {
public static apply(float[] w, float[] x,

float[] y, float[] z)

{
for (int i=0; i < w.length; ++i)

w[i] = x[i] + y[i] * z[i];

}
}

This is not much of an improvement over Fortran 77. It would be nice if we could
use the object-oriented features of Java in performance-critical code. Then we
could write high-level code using objects representing arrays, matrices, tensors,
and the like. Suppose we had a package which provided efficient numerical array
objects; with operator overloading as proposed by the Java Grande committee
[6], we could have Fortran-90 style array notation. Using such a package, the
DoArrayStuff code above could be written as:

G. Butler and S. Jarzabek (Eds.): GCSE 2000, LNCS 2177, pp. 188–200, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

www.manaraa.com

Just When You Thought Your Little Language Was Safe 189

public static apply(Array w, Array x, Array y,

Array z)

{
w = x + y * z;

}

Without operator overloading, one would write:

w.assign(x.plus(y.times(z)))

This is an improvement over JavaTran (Java in Fortran 77 style). However, can
this Array class be implemented efficiently? This is an old question, with four
well-known implementation choices:

1. Compiler extension: Write a compiler or preprocessor which recognizes a
particular array class, and optimizes it using special semantics. This is the
intent of the valarray class in the C++ standard, and of the ROSE prepro-
cessor for C++ [1]. In Java, this approach is used by the Ninja compiler [11],
which recognizes a special set of array classes and performs optimizations
for them using “semantic inlining”.

2. Pairwise evaluation: Each subexpression such as y.times(z) returns an
intermediate Array result. The extra loops, memory allocation, and memory
movement make this inefficient. Automatically fusing these loops is more
difficult than the equivalent Fortran or C loop fusion problem, because the
array pointers and loop bounds are fields of array objects. So far, no com-
mercial compiler has been able to eliminate the temporary arrays.

3. Deferred evaluation: In this approach, expressions such as y.times(z)
construct a parse tree of an expression as a data structure. When a parse
tree is assigned to an array, a match can be sought in a library of commonly
used array expressions. This requires considerable run-time overhead, and if
the expression is not found, one must revert to temporary arrays.

4. Expression templates [16]: This C++ technique is similar to deferred
evaluation, in that a parse tree of the expression is created. The parsing is
done at compile time using C++ templates, by encoding the parse tree as
a template type.1 When a parse tree is assigned to an array, a function like
this is called:

template<class T>

void assign(Array w, Expr<T> expr)

{
for (int i=0; i < n; ++i)

w.data[i] = expr.eval(i);

}

For each array position i, expr.eval(i) traverses the parse tree, evaluating
the expression. C++ semantics require that this traversal be done at compile

1 For example, x+y*z might be parsed as the template type
Expr<Array,Plus,Expr<Array,Times,Array> >

www.manaraa.com

190 Todd L. Veldhuizen

time, so the resulting loop is efficient. This technique is the basis of C++
libraries such as Blitz++ [17] and POOMA [8].

Of these approaches, expression template-based array libraries have been popular
for C++, since they deliver efficiency without compiler extensions.

It turns out that templates in C++ are strikingly like partial evaluation. A
partial evaluator takes a program, performs the operations which depend only
on known values, and outputs a specialized program [7]. The standard example
is shown in Figure 1.

float pow(float x, int n)

{
if (n == 0)

return 1.0;

else

return x * pow(x,n-1);

}

float a, b;

a = pow(b,3);

(a) Some code

// pow has been specialized for n=3

float pow 3(float x)

{
return x * x * x;

}

float a, b;

a = pow 3(b);

(b) After partial evaluation

Fig. 1. Partial Evaluation Example.

C++ requires that all template parameters be known at compile time. When
a template parameter is given by an expression (for example, Vector<3+8>),
that expression must be evaluated at compile time. C++ templates effectively
require that a partial evaluator be built into the compiler to evaluate template
expressions [12,18]. It is this partial evaluation which makes possible expression
templates and other template-based optimizations.

So here is a thought. Perhaps if we implemented a partial evaluator for Java,
we could get the same performance benefits one gets from templates in C++,
without templates.

This turns out to be at least partly true. We demonstrate a partial evaluator
for Java that can be used to implement “expression templates” and similar
performance-enhancing techniques from C++. We do this without any language
extensions; we do not use GJ or other genericity proposals for Java.

1.1 Structure of this Paper

We start by considering an analogue of the C++ “expression templates” tech-
nique for Java (Section 2). This gives users array notation, at the cost of very
poor performance. When this code is partially evaluated, we obtain performance
similar to code written in JavaTran style (Section 3). In Section 4, we overview
the Lunar compiler and summarize the optimizations performed. We point out
some shortcomings of our compiler and some related work in Section 5.

www.manaraa.com

Just When You Thought Your Little Language Was Safe 191

2 A Java Version of “Expression Templates”

Our goal is to write a class Array which provides a 1-D array of floats. Users of
this class will write code such as:

int n = 1000;

Array w = new Array(n);

Array x = new Array(n);

Array y = new Array(n);

Array z = new Array(n);

w = x + y * z; // an array expression

Since we do not yet have overloaded operators in Java, we will write w=x+y*z
like this:

w.assign(x.plus(y.times(z)));

Array expressions will be evaluated for every element in the array; the equivalent
JavaTran version of w=x+y*z is:

float[] w, x, y, z; // ...

for (int i=0; i < n; ++i)

w[i] = x[i] + y[i] * z[i];

We start by creating a highly inefficient mechanism for evaluating array expres-
sions which resembles the “expression templates” technique of C++. Then we
will see that a suitable optimizing compiler can automatically turn this into the
equivalent JavaTran implementation. More generally, such a optimizer has the
potential to duplicate many of the generative programming features of C++
templates.

Array BinaryOpExpr Times

Expr BinaryOperator

Plus

Fig. 2. Inheritance Diagram for the Array Classes.

For our pseudo-“expression templates” implementation, we will need objects
representing array expressions. We will use the class hierarchy in Figure 2: Expr
is a common base class of array expressions, and Array is itself an expression.
To represent an expression such as y*z (or y.times(z)), we use an instance of
a class BinaryOpExpr (short for Binary Operator Expression). BinaryOpExpr
contains two expressions and a pointer to a binary operator object; to create an
object representing y*z, we could write

Expr expr = new BinaryOpExpr(y, z, new Times());

www.manaraa.com

192 Todd L. Veldhuizen

where Times is an object representing multiplication. The definitions of these
classes are shown in Figures 3 and 4.

The expression base class Expr defines an abstract method float eval(int
i) which evaluates an array expression at a single array index i. Hence we can
assign an expression to array using this method of class Array:

public class Array extends Expr {
...

public void assign(Expr e)

{
for (int i=0; i < length; ++i)

data[i] = e.eval(i);

}
}

public class Array extends Expr {
float data[];
int length;

public Array(int n)
{

data = new float[n];
length = n;

}

public float eval(int i)
{

return data[i];
}

public void set(int i, float value)
{

data[i] = value;
}

public void assign(Expr e)
{

int t = length;
for (int i=0; i < t; i=i+1)

data[i] = e.eval(i);
}

}

public abstract class Expr {
public abstract float eval(int i);

public Expr plus(Expr b)
{
BinaryOperator plus = new Plus();
return new BinaryOpExpr(this,b,plus);

}

public Expr times(Expr b)
{
BinaryOperator times = new Times();
return new BinaryOpExpr(this,b,times);

}
}

public class BinaryOpExpr extends Expr {
Expr a, b;
BinaryOperator op;

public BinaryOpExpr(Expr a, Expr b,
BinaryOperator op)

{
a = a;
b = b;
op = op;

}

public float eval(int i)
{
return op.apply(a.eval(i),b.eval(i));

}
}

Fig. 3. The Array Class, and Parse Tree Classes Expr and BinaryOpExpr.

Figure 5 shows a test program which exercises the Array class. It initializes some
arrays, then evaluates the expression w=x+y*z. The method which assigns the
expression to w is Array.assign(Expr):

www.manaraa.com

Just When You Thought Your Little Language Was Safe 193

public abstract class BinaryOperator {
public abstract float apply(float a, float b);

}

public class Plus extends BinaryOperator {
public float apply(float a, float b)

{
return a+b;

}
}

public class Times extends BinaryOperator {
public float apply(float a, float b)

{
return a*b;

}
}

Fig. 4. The BinaryOperator Base Class and Two Subclasses.

public class Test {
public static void main(java.lang.String[] args)

{
// Create some arrays

int n = 12345;

Array w = new Array(n);

Array x = new Array(n);

Array y = new Array(n);

Array z = new Array(n);

// Initialize with data

for (int i=0; i < n; i=i+1)

{
x.set(i,i*0.33f);

y.set(i,10.0f+i);

z.set(i,100.0f*i);

}

// With operator overloading, this would be

// w = x + y * z

w.assign(x.plus(y.times(z)));

}
}

Fig. 5. Test Code for the Array Class.

www.manaraa.com

194 Todd L. Veldhuizen

public void assign(Expr e)

{
for (int i=0; i < length; i=i+1)

data[i] = e.eval(i);

}
This method loops through the array, evaluating the array expression for each
i, and storing the result in w.data[i]. To evaluate each e.eval(i), six virtual
function calls, three bound checks, and numerous pointer indirections are re-
quired. Not surprisingly, performance is quite poor with typical Java compilers.
This loop has been benchmarked at 0.7 Mflops using the Kaffe JIT compiler on
a 300 MHz sparcv9; that is roughly 1 flop every 428 clock cycles.

With partial evaluation, all of this inefficiency can be removed. We have
implemented a prototype compiler called Lunar that compiles Java to an inter-
mediate form, partially evaluates it, and emits C code. This is then compiled
to machine code using a C compiler. When applied to the example program
(Figure 5), Lunar performs these optimizations:

– Constant and copy propagation through the heap, resolving (when possible)
virtual method calls and pointer indirection at compile time.

– Inlining virtual methods.
– Elimination of bound checks when they are provably unnecessary.
– Elimination of unnecessary temporary objects.

int i = 0;

for (; (i < 12345);)

{
int __a75 = (i * 4);

int __a71 = (i * 4);

float __a31 = *((float *) (array1d__96 + __a71));

int __a184 = (i * 4);

float __a171 = *((float *) (array1d__107 + __a184));

int __a163 = (i * 4);

float __a176 = *((float *) (array1d__118 + __a163));

float __a35 = (__a171 * __a176);

float __a76 = (__a31 + __a35);

*((float *) (array1d + __a75)) = __a76;

i = (i + 1);

}

Fig. 6. C Code Generated by Lunar for the Expression w=x+y+z of Figure 5

The C code generated by Lunar for the Java expression w.assign(x.plus(-
yexpr.times(zexpr))) is shown in Figure 6. Lunar is able to eliminate all the
virtual functions, remove all bound checks, and even get rid of the temporary
BinaryOpExpr, Plus, and Times objects.

www.manaraa.com

Just When You Thought Your Little Language Was Safe 195

3 Benchmark Results

We present preliminary benchmark results on a sparcv9 processor at 300 MHz,
using gcc -O3 as the back end compiler for Lunar. Figure 7 compares the
performance of the Lunar compiler to hand-coded C for the array expression
w = x + y ∗ z. The JavaTran series shows the performance of Lunar on the loop

float[] w, x, y, z; // ...

for (int i=0; i < n; i=i+1)

w[i] = x[i] + y[i]*z[i];

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

10

20

30

40

50

60

70

80

Array length (n)

M
flo

ps
/s

C version
JavaTran (PE)
Java ET (PE)
Java ET (no PE)

Fig. 7. Benchmark results for the array expression w=x+y*z, comparing (from
top to bottom) hand-coded C, JavaTran-style code compiled with Lunar, Java
“Expression-templates” version compiled with Lunar (with Partial Evaluation),
Java “Expression-templates” compiled with Lunar (no Partial Evaluation). The
three plateaus correspond to (left to right): L1 cache, L2 cache, and out-of-cache
performance.

The Java ET series show the performance of w.assign(x.plus(y.times(z)))
using Array objects. When the partial evaluator is disabled (the “no PE” series),

www.manaraa.com

196 Todd L. Veldhuizen

Table 1. Mflops/s for the array expression w = x + y ∗ z, n = 1000, single
precision. PE=Partial Evaluation.

JVM or compiler “JavaTran” “Expression
Templates”

Lunar (no PE); gcc -O2 backend 33.1 2.4
Lunar (with PE); gcc -O2 backend 74.6 74.6
Sun Hotspot 1.3beta (JIT) 1.4 0.4
Transvirtual Kaffe (JIT) 4.3 0.7

performance takes a drastic hit – indicating that Lunar, not gcc, is doing the
important optimizations.

Table 1 compares performance of Lunar to two JIT compilers (Sun Hotspot
and Transvirtual Kaffe).

The partial evaluator gives a modest improvement over the JavaTran-style
code, but the biggest improvement is for the Java version of “expression tem-
plates”.

Table 2. Time to compile the “expression templates in Java” example of Fig-
ure 5, excluding C compilation time.

Phase Elapsed time (ms)

Parsing 916
Conversion to Lunar IL2 303
Prepasses 91
Partial evaluation 1569
Unparsing to C 678

Total 3557

Table 2 shows a summary of the time taken by Lunar to compile the “expres-
sion templates in Java” example with partial evaluation. The Lunar compiler is
written in Java, and was run using Sun Hotspot 1.3beta. Once the compiler is
able to compile itself, these times should decrease.

4 Compiler Overview

Figure 4 shows an overview of the Lunar compiler. The front end takes Java
code and translates it into an intermediate language, called Lunar Intermediate
Language 2 (IL2). Prior to partial evaluation, a prepass puts the code into a
form which makes partial evaluation simpler. This code is then passed to the
partial evaluator. The output from the partial evaluator is then translated into
C and compiled using a C compiler.

Table 3 summarizes the analyses and transformations currently implemented
in Lunar. Many of these are similar to those implemented in conventional com-
pilers. However, there are substantial differences between partial evaluation and

www.manaraa.com

Just When You Thought Your Little Language Was Safe 197

typical optimizers. Partial evaluators tend to have a flavour of symbolically ex-
ecuting a program, whereas typical imperative compilers are more flow-graph
based.

Translation from IL0
 to C code

Low−level optimizations
(registers, instructions,
 scheduling)

(to C)
Code Gen

gcc −O3
Partial

Evaluator
Prepasses

Java
Front End

IL0 .c.java IL2 IL0 a.out

Translation to IL2

Liveness analysis
Escape analysis
Alias analysis
Stack allocation analysis
Copy propagation
Constant folding
Function specialization

Inlining
Dead code elimination

Global heap analysis

Lex/Parse
Semantic checks
Name analysis
Type analysis

Macro expansion

Alpha−conversion
Assignment elimination
Static initializer ordering

Bound check elimination

Name mangling

Lunar Lunar Lunar

Sequentialization

Fig. 8. Overview of the Lunar Compiler.

Table 3. Analyses and Transformations in the Lunar Compiler.

Prepass transforms Purpose

Macro expansion Expand macros used to simplify the Java front end
Sequentialization Name intermediate values, simplify language structure
Assignment elimination Remove variable assignments; ensure that variable

names map uniquely to values within a scope.
α-conversion Rename variables to ensure unique names
Static initializer ordering Find initialization order for global variables;

delete unused functions and global variables.

Partial evaluator Purpose

Liveness analysis Decide how function parameters are used.
Escape analysis Decide if values might escape into the heap.
Alias analysis Decide if heap objects are alias-free.
Stack allocation analysis Allocate objects on the stack instead of the heap

when possible.
Copy propagation Find variables that refer to the same value.
Constant folding Fold constants, eliminate primitive operations
Function specialization Specialize functions according to known argument

values
Global heap analysis Constant and copy propagation through the heap.
Inlining Selectively inline functions to improve optimization.
Dead Code Elimination Eliminate dead variables, code, functions, and

global variables.
Bounds check elimination Remove bounds checks that are provably unnecessary.

www.manaraa.com

198 Todd L. Veldhuizen

5 Summary

5.1 Caveats

Lunar’s Java front end handles a modest subset of Java 1.1. It does not yet
support threads or inner classes. It is possible that use of some Java language
features (for example, synchronization) will make it harder to perform the opti-
mizations described in this paper.

Lunar emits code for a “loose numerics” version of Java. It uses the na-
tive floating point hardware, without concern for whether this correctly imple-
ments Java numeric semantics. This is not a requirement, but a shortcut. Strict
numerics could be implemented, although they would likely have performance
implications on some platforms.

Lunar does not yet perform null pointer checking. The plan is to follow the
example of gcj, and trap SIGSEGV signals. This does not require changing any
of the translation or code generation; trapping is done by the hardware and
handled in a runtime library. Hence, the benchmark results reported here are
not compromised by our omission of null pointer checking.

Our Java runtime does not do any garbage collection. In most of the bench-
mark results presented, the partial evaluator eliminates all memory allocation
inside loops. Hence the absence of a garbage collector does not affect our perfor-
mance in a major way. The exception is the benchmarks of Table 1 which show
Lunar results without PE. For these results, not doing garbage collection gives
Lunar an unfair advantage over the JIT compilers.

Some of the algorithms in Lunar are O(n lg n), and a few are quadratic in
certain (possibly unlikely) scenarios. Lunar has not yet been tested on large
Java programs, so it is possible we will uncover scaling problems. The plan is
to provide a set of optimization switches -O1,-O2,..,-O5 which progressively
enable more expensive and expansive forms of partial evaluation.

The algorithms in Lunar do not require closed-program analysis. However,
the more of the program Lunar can see, the better it can optimize.

Unlike C++ templates, Lunar offers no guarantee of compile-time evaluation.
There is no analogy to type template parameters in C++, although Lunar can
specialize functions based on types related by an inheritance hierarchy.

5.2 Related Work

There is a wealth of literature about compilers and partial evaluation, both
separately and their intersection. The idea of resolving virtual functions through
specialization was detailed by Dean et al [4]. Lunar achieves a similar effect
“for free” by relying on the heap analyzer to propagate function names through
dispatch tables. Khoo [9] used partial evaluation to compile inheritance, doing
what would (analogously) in Java be dispatch table (or vtable) layout, but he
did not use partial evaluation to resolve and inline virtual functions.

Many of the C++-template-like optimizations performed by Lunar are driven
by a heap analyzer, which does constant and copy propagation through the heap.

www.manaraa.com

Just When You Thought Your Little Language Was Safe 199

This builds on a tradition of partly-static data structures in the partial evaluation
community (e.g. [3]), and of store analyzers in the imperative world (e.g. [13,14]).

Volanschi et al [19] describe a partial evaluator for Java which relies on user
annotations (“specialization classes”) to guide specialization of Java programs.
This provides finer control of specialization than Lunar, at the cost of requiring
language extensions.

The benefits of partial evaluation for scientific programs are well known;
see for example [2,5,10]. Lunar is not designed to optimize scientific programs
per se, but rather to provide reliable partial evaluation semantics which can be
used as a driving mechanism for performing domain-specific optimizations (for
example, “expression templates” for array classes). In this regard it has similar
goals as two- or multi-stage languages (e.g. [15]) which seek to provide a natural
framework for writing “program generators”.

Acknowledgments

Lunar uses JavaCC for lexing and parsing, and the GCC compiler for its back
end. The term JavaTran derives from the similar term C++Tran coined by
Scott Haney. I am grateful to Kent Dybvig, Ken Chiuk, Jeremy Siek, and Steve
Karmesin for comments and discussion.

References

1. Bassetti, F., Davis, K., and Quinlan, D. Optimizing transformations of stencil
operations for parallel object-oriented scientific frameworks on cache-based archi-
tectures. Lecture Notes in Computer Science 1505 (1998), 107.

2. Berlin, A., and Weise, D. Compiling scientific code using partial evaluation.
Computer 23, 12 (Dec 1990), 25–37.

3. Consel, C. Binding time analysis for higher order untyped functional languages.
In 1990 ACM Conference on Lisp and Functional Programming (June 1990), ACM,
ACM Press, pp. 264–272.

4. Dean, J., Chambers, C., and Grove, D. Selective specialization for object-
oriented languages. In Proceedings of the ACM SIGPLAN’95 Conference on Pro-
gramming Language Design and Implementation (PLDI) (La Jolla, California, 18–
21 June 1995), pp. 93–102.

5. Glück, R., Nakashige, R., and Zöchling, R. Binding-time analysis applied to
mathematical algorithms. In System Modelling and Optimization (1995), J. Doležal
and J. Fidler, Eds., Chapman & Hall, pp. 137–146.

6. Interim Java Grande report. Tech. Rep. JGF-TR-4, Java Grande Committee, 1999.
7. Jones, N.D. An introduction to partial evaluation. ACM Computing Surveys 28,

3 (Sept. 1996), 480–503.
8. Karmesin, S., Crotinger, J., Cummings, J., Haney, S., Humphrey, W.,

Reynders, J., Smith, S., and Williams, T. Array design and expression eval-
uation in POOMA II. In ISCOPE’98 (1998), vol. 1505, Springer-Verlag. Lecture
Notes in Computer Science.

9. Khoo, S.C., and Sundaresh, R. S. Compiling inheritance using partial evalua-
tion. In Proceedings of the Symposium on Partial Evaluation and Semantics-Based
Program Manipulation (New Haven, CN, June 1991), vol. 26(9), pp. 211–222.

www.manaraa.com

200 Todd L. Veldhuizen

10. Kleinrubatscher, P., Kriegshaber, A., Zöchling, R., and Glück, R. For-
tran program specialization. SIGPLAN Notices 30, 4 (1995), 61–70.

11. Moreira, J.E., Midkiff, S.P., Gupta, M., Artigas, P.V., Snir, M., and

Lawrence, R.D. Java programming for high-performance numerical computing.
IBM Systems Journal 39, 1 (2000), 21–56.

12. Salomon, D.J. Using partial evaluation in support of portability, reusability, and
maintainability. In Compiler Construction ’96 (Linköping, Sweden, 24–26 Apr.
1996), pp. 208–222.

13. Sarkar, V., and Knobe, K. Enabling sparse constant propagation of array
elements via array SSA form. Lecture Notes in Computer Science 1503 (1998), 33.

14. Steensgaard, B. Sparse functional stores for imperative programs. In ACM
SIGPLAN Workshop on Intermediate Representations (IR’95) (Jan. 1995), vol. 30
(3) of SIGPLAN Notices, ACM Press, pp. 62–70.

15. Taha, W., and Sheard, T. Multi-stage programming with explicit annotations.
ACM SIGPLAN Notices 32, 12 (1997), 203–217.

16. Veldhuizen, T.L. Expression templates. C++ Report 7, 5 (June 1995), 26–31.
Reprinted in C++ Gems, ed. Stanley Lippman.

17. Veldhuizen, T.L. Arrays in Blitz++. In Proceedings of the 2nd International Sci-
entific Computing in Object-Oriented Parallel Environments (ISCOPE’98) (1998),
Lecture Notes in Computer Science, Springer-Verlag.

18. Veldhuizen, T.L. C++ templates as partial evaluation. In Proceedings of
PEPM’99, The ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, ed. O. Danvy, San Antonio, January 1999. (Jan.
1999), University of Aarhus, Dept. of Computer Science, pp. 13–18.

19. Volanschi, E.-N., Consel, C., Muller, G., and Cowan, C. Declarative spe-
cialization of object-oriented programs. In ACM SIGPLAN conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’97) (Oc-
tober 1997), pp. 286–300.

www.manaraa.com

Author Index

Bassett, Paul G. 1
Batory, Don 163
Becker, Martin 100
Bosch, Jan 147
Bruin, Hans de 129

Coplien, James O. 37

Goedicke, Michael 114

Högström, Mattias 147
Heuzeroth, Dirk 178

Jonge, Merijn de 85

Klaeren, Herbert 57

Ludwig, Andreas 178

Neumann, Gustaf 114

Pulvermüller, Elke 57

Rashid, Awais 26, 57
Ritter, Jörg 70

Smaragdakis, Yannis 163
Speck, Andreas 57

Teschke, Thorsten 70
Tilman, Michel 15

Veldhuizen, Todd L. 188
Visser, Joost 85

Zdun, Uwe 114
Zhao, Liping 37

